Monitoring of Riparian and Aquatic Habitat in the Olympic Experimental State Forest: Project Description and Collaboration Opportunities

Teodora Minkova and Kyle Martens

Presentation to WCSSP, March 24, 2015
270,000 ac forested lands

Steep erodible terrain

Ave. precipitation of 140"/year

Dense stream network

Temperate rain forest

Sitka Spruce and Western Hemlock vegetation zones

Some of the healthiest salmon populations in WA
Working forest - current harvest level of 576 mmbf / decade

Habitat Conservation Plan signed in 1997
  • Northern spotted owl
  • Marbled murrelet
  • Salmonids

Integrated forest management:
  • limited fixed reserves for spotted owl conservation
  • variable-width riparian buffers

A place for experimentation
OESF Forest Land Plan was developed to guide forest management

Environmental Impact Analysis (EIS) showed improved aquatic and riparian conditions

Uncertainties identified during the analyses:

- Resource inventory (streams, forest)
- Ecological relationships
- Management effects
- Effects of natural disturbances
Monitoring Goal

To characterize the recovery of riparian and aquatic habitat across the OESF as the forest land plan is implemented.
Objectives of the Study Plan

1. Document the status and trends in riparian and aquatic conditions.

2. Test presumed relationships between riparian, upland, and in-stream conditions.

3. Test the assumptions about habitat recovery and evaluate the EIS projections of riparian habitat conditions over time.

4. Supply information for HCP implementation, effectiveness, and validation monitoring.

5. Improve understanding of “habitat complexity afforded by natural disturbances”.

6. Establish critical baseline information for adaptive management.
Spatial Study Design

Target population: 601 basins (size 70-1760 ac)

Sample: 50 OESF basins + 4 reference basins in the Olympic National Park

Field sampling at the basin’s outlet

Sample reach: 100+ m of fish bearing stream and riparian area
Sites by watershed:

- Hoko = 2
- Clallam = 3
- Sol Duc = 1
- Dickey = 2
- Callawah = 1
- Goodman = 9
- Mosquito = 1
- Hoh = 9
- Clearwater = 18
- Queets = 4
Monitoring indicators

Nine aquatic and riparian indicators sampled at reach level:

1) channel morphology (incl. gradient, confinement, depth, and width)
2) water temperature
3) channel substrate
4) stream discharge
5) in-channel large woody debris
6) habitat units (such as pools)
7) stream shade
8) riparian microclimate
9) riparian forest vegetation

Watershed-level “stressors” were identified for monitoring in the 50 sample basins

1) timber harvest activities
2) road management and use
3) natural disturbances (windthrow, landslides, floods and debris flows)
Stream Elevation Survey

Longitudinal profiles completed for 33 basins

Longitudinal profile of basin 433

- Bankfull Stage
- Left Edge of Water
- Thalweg
## Cross-section Survey

- channel width
- channel depth
- substrate size
- substrate embeddedness

Protocols completed for 33 basins

<table>
<thead>
<tr>
<th>Cross Section station intervals (cm)</th>
<th>Channel Substrate</th>
<th>Particle #1</th>
<th>Particle #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>size (mm)</td>
<td>size class</td>
<td>embed. (%)</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>fine gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>coarse gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>160</td>
<td>cobble</td>
<td>30</td>
</tr>
<tr>
<td>A</td>
<td>240</td>
<td>coarse gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>320</td>
<td>cobble</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>400</td>
<td>fine gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>480</td>
<td>fine gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>560</td>
<td>sand&amp;silt</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>640</td>
<td>fine gravel</td>
<td>n/a</td>
</tr>
<tr>
<td>A</td>
<td>720</td>
<td>coarse gravel</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>800</td>
<td>coarse gravel</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Stream Temperature

- Continuously recording air and water temperature data loggers
- Installed in all 54 basins
- Field protocol based on DOE procedures (Bilhimer et al. 2013)
Stream Temperature Data Management

Stream Temperature Dataset at end of 2014: Number of Basins Monitored by Date

Note: graph does not reflect rejected data (e.g., dewatered loggers)

Installation Phase

Decrease in sample size reflects the date of last download for each basin
Stream Temperature Data Management

QC procedures following Sowder and Steel (2012)

Commonly observed problems:

- Dewatered loggers
- Buried loggers
Stream Shade

- Sampling through hemispherical photography

- Analyses of images with Hemispher (Schleppi 2011) and Sidelook (Nobis 2005)
Microclimate

- Continuously recording loggers measuring air temperature and humidity
- Installed in 10 basins
The 14 sample basins selected for hydrologic monitoring.
Hydrologic Monitoring

- Discharge measured 10-12 times first year to build a rating curve; following USGS protocol
- Cross-section surveys, 1-2 times/year
- Data management in house using relational Access database
Large Wood

Field protocol modified from Schuett-Hames et al. (1999)

Sampling completed in 33 basins
Classification of Channel Types and Habitat Units

Montgomery and Buffington 1993

Habitat unit measurements completed in 33 basins

Modified from Bisson et al. 2006
Riparian Vegetation
Monitoring protocols not depicted:

- In-stream large wood
- Habitat units
- Riparian vegetation
### Project Implementation Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pilot phase</th>
<th>Full-implementation phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Recon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot data collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot phase analyses and report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend reports</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funding provided by DNR

Conducted in cooperation with FS Pacific Northwest Research Station
Salmonid monitoring

Objective: To develop a salmonid validation monitoring program for the OESF as part of the DNR’s riparian conservation commitment to the HCP.

What is the commitment?

“For salmonids, validation monitoring will employ surveys to detect changes in the productivity of spawning adults and salmon habitat relationships.” HCP 1997

“This will involve estimating numbers of spawning adults and numbers of recruits (i.e., out migrating smolts or rearing juveniles), and surveying different stream habitat types and conditions to determine fish numbers, species composition, and densities.” HCP 1997
Field work planned for 2015

Non-population fish sampling at the 50 habitat sites
(Fish were observed in 32 sites and 1 site was found to have a fish barrier)

• Identify species composition and presence/absence at sites

• Confirm timing of sampling based on fish size

• 2-3 person crew

• 2-3 sites per day (17-25 days)
Initial ideas for a sampling plan (starting in 2016)

- 50 existing habitat sites (20 annual and 30 rotating sites)
  Summer sampling 30 or 35 sites a year (2 or 3 year rotating panel)
  Coho redd surveys (fall/winter)
  Winter sampling on 20 annual sites

- Electrofishing using multiple-pass removal

- PIT tagging in 20 annual sites (2,000-3,000 fish per year)

- Indicators: fish abundance, growth, species richness, survival/fall migration (?), and smolt abundance index (?)
Examples of correlation graphs (Van Dusen et al. 2005)

Relationships between habitat, fish, and management activities
Field crew:
Jessica Hanawalt
Mitchell Vorwerk
Ellis Cropper
Rachel LovellFord

Acknowledgements
Collaboration opportunities: sharing data

- Stream temperature data
- Stream flow data
- Remote sensing data (e.g. LiDAR)
- Salmon habitat data
- Redd surveys
- Juvenile production estimates
- PIT tag recapture data
Collaboration opportunities: sharing scientific expertise

- Hydrology analyses
- Remote sensing analyses
- Data management
- Analyses of forest and road management effects on aquatic and riparian habitat
- PIT Tag Technology
Collaboration opportunities: joint grant applications

• Restoration projects
• Monitoring projects
• Research projects
• Education / citizen science projects
Questions?