Potential Risks to Freshwater Aquatic Organisms Following a Silvicultural Application of Herbicides in Oregon's Coast Range

Jeff Louch¹, Vickie Tatum¹, Ginny Allen¹, V. Cody Hale², Jeffrey McDonnell², Robert J. Danehy¹, George Ice¹

- 1. National Council for Air and Stream Improvement
- 2. College of Forestry, Oregon State

Figure 3. Concentrations of Pesticides Detected in 129 Post-Spray Samples from 26 operations (mdl = 0.04-1.0). Seven out of 25 samples tested at mdl < 1 ppb contained trace concentrations of pesticide.

Needle Branch, Alsea Watershed, Oregon Coast

Upper 91 acres

Helicopter Application

Mix -

Glyphosate -681 g/ac(a.e.) Imazapyr 85 g/ac (a.e.) SMM 64 g/acre (a.i.) MSM 17 g/ac (a.i.)

BMPs-

Mid to High – 18 m no spray buffer Above High – half boom – 3m buffer

Table 3. Comparison of Time-Weighted Average Exposures to Roundup® or Vision® Formulations Associated with Multiple Scenariosa

Exposure

Absolute

Scenario/Species

Conc. (ng/L)

Duration (h)

(ng/L*h)

Experimental Endpoint

			Absolute	
Scenario/Species	Conc. (ng/L)	Duration (h)	(ng/L*h)	Experimental Endpoint
Needle Branch:				
application pulse	62	4	248	
storm pulse #1 (8 DAT)	115	10	1,150	
storm pulse #2 (10 DAT)	42	12	504	
baseflow (to 8 DAT)	25	192	4,800	
cumulative exposu	ire		6,702	
NOECs and NOAECs for Roundup® or Vision	® based on "tradition	nal" endpoints:		
Selanastrum capricornutum (algae)	226,300	72	1.63E+07	growth (biomass)
Oncorhynchus mykiss(fingerling)	260,000	96	2.50E+07	survival
Daphnia magna (invertebrate)	589,000	48	2.83E+07	survival, growth
Oreochromis niloticus (tilapia)	310,000	96	2.98E+07	survival
Lepomis macrochirus (bluegill)	700,000	96	6.72E+07	survival

Daphnia magna (invertebrate)	589,000	48	2.83E+07	survival, growth
Oreochromis niloticus (tilapia)	310,000	96	2.98E+07	survival
Lepomis macrochirus (bluegill)	700,000	96	6.72E+07	survival
Myriophyllum sibiricum (watermilfoil)	242,000	336	8.13E+07	root length
Daphnia magna (invertebrate)	992,000	504	5.00E+08	survival, growth, reproduction
Gammarus pseudolimnaeus (invert.)	14,000,000	48	6.72E+08	survival
Lemna minor (duckweed sp.)	16,910,000	48	8.12E+08	?
Potamogeton pectinatus (pondweed)	7,440,000	336	2.50E+09	growth
NOECs and NOAECs for Roundup® or V	vision® based on	biochemical or	"non-traditional"	endpoints:
Oncorhynchus mykiss	7,400	0.0333	246	neurophysiological olfaction
Oncorhynchus mykiss	7,400	0.5	3,700	"behavioral olfaction"

0.167

96

240

742,000

1,000,000

6,750,000

2,880,000

1.24E+05

1.00E+06

6.48E+08

6.91E+08

avoidance

avoidance

"erratic swimming and rapid respiration"

"several sublethal parameters"

Oncorhynchus mykiss

Oncorhynchus mykiss

Ephemeralla walkeri(mayfly)

Oncorhynchus kisutch(coho)

Conclusions

- Glyphosate was detected at HIGH (62 ng/L) but not at LOW during application
- Glyphosate was present in baseflow at all stations 3 DAT and still detectable at HIGH 8 DAT (only)
- Discrete pulses of Glyphosate at 2 upper sites after first two storms: 8 DAT a 10 h pulse maxed at 115 ng/L at MID. 2nd event 10 DAT a 12 h pulse at 42 ng/L at HIGH
- Glyphosate < 20 ng/L at all storm events at LOW
- Needle Branch TWA exposures are orders of magnitude less than known endpoints of aquatic biota based on the literature
- Magnitude of Needle TWA is within known olfaction endpoints of salmon, however incoming coho arrive OCT/NOV

- Louch, J., Tatum, V., Allen, G., Hale, V. C., McDonnell, J., Danehy, R. J. and Ice, G. (2016), Potential risks to freshwater aquatic organisms following a silvicultural application of herbicides in Oregon's Coast Range. Integr Environ Assess Manag. doi:10.1002/ieam.1781
- McBroom, MW, Louch J., Beasley RS, hang M, Ice GG. 2013. Runoff of silvicultural herbicides applied using best management practices. Forest Sci. 59:197-210.
- Scarbrough et al. 2015. Herbicide concentrations in first-order streams after routine application for competition control in establishing pine plantations. Forest Science 61(3).