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ABSTRACT

The Horse Heavens Hills uplift in south-central Washington consists of
distinct northwest and northeast trends which merge in the lower Yakima
Valley. The northwest trend is adjacent to and parallels the Rattlesnake-
Wallula structural alignment (a part of the Olympic-Wallowa topographic
lineament). The northwest trend and northeast trend consist of aligned or
en echelon anticlines and monoclines whose axes are generally oriented in
the direction of the trend. At the intersection, folds in the northeast

trend plunge onto and are terminated by folds of the northwest trend.

The crest of the Horse Heaven Hills uplift within both trends is
composed of a series of asymmetric, north vergent, eroded, usually double-
hinged anticlines or monoclines. Some of these major anticlines and
monoclines are paralleled to the immediate north by lower-relief anticlines
or monoclines. A1l anticlines approach monoclines in geometry and often

change to a monoclinal geometry along their length.

In both trends, reverse faults commonly parallel the axes of folds
within the tightly folded hinge zones. Tear faults cut across the northern
limbs of the anticlines and monoclines and are coincident with marked

changes in the wavelength of a fold or a change in the trend of a fold.



RHO-BW-SA-344 P

Layer-parallel faults commonly exist along steeply-dipping stratigraphic
contacts or zones of preferred weakness in intraflow structures. Most of

these faults appear to reflect strain from folding.

Isopach maps of Columbia River basalt flows and Ellensburg Formation
interbeds and paleodrainage maps of the ancestral Columbia River system
indicate that deformation occurred simultaneously along and coincident with
both trends of the Horse Heaven Hills uplift, the lower Yakima Valley
syncline, the Piening syncline (within the Horse Heaven Plateau), and the
Hog Ranch-Naneum Ridge anticline (within the lower Yakima Valley) since at
least Roza time. Data are not available for determining the timing and
location of deformation prior to Roza time, nor does the geologic record
allow for a detailed description of the growth history after Columbia River
Basalt Group time, except that the observed present structural relief along
the Horse Heavens Hills uplift developed after Elephant Mountain time

(10.5 m.y.B.P.).

Relief between the Horse Heaven Hills uplift and the lower Yakima
Valley syncline developed at an average rate of less than »70 m/m.y. during
Wanapum and Saddle Mountains time (combined rate of vertical uplift and
subsidence). Growth rates appear to decrease with age. Growth rates,
extrapolated to the present, approximate the cumulative relief developed
since Wanapum time and suggest that folds developed at a uniform rate since
Columbia River Basalt Group time to the present. However, the data from
this study do not preclude the variability of growth rates in post Columbia

River Basalt Group time.

iv
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Data from this study suggest that tectonic models that directly or
indirectly pertain to the origin of the Horse Heaven Hills uplift may be
constrained by: (1) the predominance of monoclinal or near-monoclinal fold
geometries and reverse faults along both the northwest and northeast trends;
(2) preliminary data which suggest clockwise rotation has occurred along
folds of both trends; (3) folds along both trends developing simultaneously
and at similar rates (at least during Wanapum and Saddle Mountains time);
(4) folds along the northwest trend of the Horse Heaven Hills uplift being
genetically related to and forming simultaneously with at least certain
folds along the Rattlesnake-Wallula structural alignment; (5) the uplift
developing simultaneously with the north-northwest-trending Hog Ranch-Naneum
Ridge anticline as well as other Yakima folds during at least Columbia River
Basalt Group time. It is proposed that folds of both trends of the Horse

Heaven Hills uplift were generated by the same tectonic processes.
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1.0 INTRODUCTION

1.1 PURPOSE

Several generally narrow, east-west-trending Yakima folds extend
eastward from the Cascade Range into the central Columbia Basin. Two of
these folds, the Rattlesnake Hills uplift and the Horse Heaven Hills uplift,
abruptly change trend near the western margin of the Pasco Basin and con-
tinue southeast towards the Blue Mountains. The northwest-trending portions
of the Horse Heaven Hills and Rattlesnake Hills uplifts are coincident with
and parallel, respectively, a portion of the Rattlesnake-Wallula structural
alignment (RAW), (Bingham et al. 1970; fig. 1) which is part of the Olympic-
Wallowa topographic lineament (OWL), (Raisz 1945; fig. 2). The northwest
trend of the Horse Heaven Hills uplift is part of another structural align-
ment, the Anderson Ranch-Wallula structural alignment (ARW; see fig. 1).

The structural and evolutionary relationships of these two northwest- and
northeast-trending structural trends at their intersections are unclear but
are important to the understanding of the development of the Yakima folds.
The purpose of this study is to describe the structure and evolution of one
of these uplifts, the Horse Heaven Hills, at its abrupt structural transi-
tion. This was achieved by (1) delineating the structure within the two
trends as they approach the intersection, (2) determining the timing and
location of uplift within each trend, (3) comparing and contrasting Miocene
vertical growth rates along folds within both trends, and (4) imposing
constraints for tectonic models that pertain to the genesis of the Horse
Heaven Hills uplift. These objectives can only be fulfilled if the
stratigraphy of the area is first delineated.

1.2 REGIONAL GEOLOGIC SETTING

The Horse Heaven Hills uplift lies within the Columbia Plateau geologic
province, which is an intermontane basin between the Cascade Range to the
west and the Rocky Mountains to the east. The Columbia Plateau can be
divided into three informal structural subprovinces (Myers et al. 1979; see
fig. 2): (1) the Blue Mountains subprovince characterized by the northeast-
trending Blue Mountains uplift, (2) the Palouse subprovince characterized by
a generally undeformed, westward-tilting paleoslope, and (3) the Yakima Fold
Belt subprovince characterized by generally east-west and northwest-
southeast-trending folds such as the Horse Heaven Hills uplift.

Three of the five formations that make up the Miocene tholeiitic flood
basalts of the Columbia River Basalt Group are known to underlie the Yakima
Fold Belt subprovince. They are the Grande Ronde Basalt, the Wanapum
Basalt, and the Saddle Mountains Basalt. Basalt flows of these three
formations were erupted during a period of time spanning 17 to 6 m.y.B.P.
(McKee et al. 1977; Long and Duncan 1982) from northwest-trending Tinear
vent systems in the eastern portion of the Columbia Plateau (Waters 1961;
Taubeneck 1970; Swanson et al. 1975; Price 1978). Intercalated with and
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overlying the Columbia River Basalt Group in western and central portions of
the Columbia Plateau are epiclastic and volcaniclastic sediments of the
Ellensburg Formation that were derived from both within and outside the
Columbia Plateau (Waters 1955; Mackin 1961; Schmincke 1964, 1967c; Swanson
et al. 1979c). Overlying the Columbia River Basalt Group and El1lensburg
Formation to the east of the lower Yakima Valley are remnants of Miocene and
Pliocene fluvial and lacustrine sediments of the Ringold Formation (Myers

et al. 1979; Tallman et al. 1981), and to the northwest of the lower Yakima
Valley are Pliocene Thorp or Thorp-equivalent sediments (Waitt 1979;
Campbell 1983). Pleistocene glaciofluvial deposits from catastrophic floods
mantle portions of many of the basins within the Yakima Fold Belt (Baker and
Nummedal 1978). Loess and dune sand of Pleistocene and Holocene age blanket
much of the area as well.

1.2.1 Location and Physical Description

The study area covers portions of the lower Yakima Valley, Horse Heaven
Hi11s, Horse Heaven Plateau, and Badger Coulee (see fig. 1). The Horse
Heaven Hills are a series of ridges averaging 600 m in elevation. Approxi-
mately 450 m of topographic relief exists between these ridge crests and the
lower Yakima Valley. The Horse Heaven Hills uplift is bordered to the north
by the eastward-flowing Yakima River.

Any portion of the study area is accessible to within a few kilometers
of certain roads. The Horse Heaven Hills uplift can be reached from major
arterials such as Interstate 82 between Benton City and Prosser, Washington;
State Highway 22 between Prosser and Mabton, Washington; and State
Highway 221 between Prosser and Paterson, Washington. Secondary roads such
as Webber Canyon Road, McBee Grade, Lincoln Grade, Ward Gap Road, and Byron
Road all cross the ridge crest of the Horse Heaven Hills. Dirt roads along
portions of the crest are usable with permission from the landowner. Irri-
gation ditch roads also provide good access to the northern base of the
Horse Heaven Hills uplift, but permission for access is required from the
appropriate irrigation districts.

1.2.2 Methodology

To delineate the structure and stratigraphy exposed along the Horse
Heaven Hills uplift, a bedrock outcrop map (scale 1:24,000) and a geologic
map (scale 1:62,500) were constructed (map area, fig. l; plate 1).
Stratigraphic units were identified using (1) basalt lithologies,

(2) stratigraphic positions, (3) basalt paleomagnetic polarities (using a
fluxgate magnetometer), and (4) major oxide chemistry (as determined by
x-ray fluorescence analysis (XRF)). In addition, subsurface stratigraphic
units within the study area (generally located in the area adjacent to the
Horse Heaven Hills uplift) were identified using borehole geophysical logs,
drillers' logs, lithology of drill cuttings, and XRF analyses of drill
cuttings.
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To determine the timing and location of deformation in the study area,
computer-generated isopach maps were constructed of individual Columbia
River Basalt Group members and Ellensburg Formation interbeds using section-
thickness data gathered from borehole geophysical logs, drillers' logs, and
field sections. These isopach maps were later modified by the author to be
more representative of the geology of the area.

Growth rates were calculated for the Horse Heaven Hills uplift by
plotting cumulative paleorelief (determined from isopach maps) against
radiometric age dates of certain Columbia River Basalt Group flows.

More background on some of these methods is presented in the
appendixes.

1.2.3 Previous Work

Several geologic studies have encompassed portions, or all, of the
study area, both in reconnaissance and in detail. Table 1 generally sum-
marizes the various studies that include aspects of the structure of the
Horse Heaven Hills uplift (and immediate area) and stratigraphy of the
Columbia River Basalt Group and Ellensburg Formation within the study area.
A major advancement in the study of the structure and stratigraphy of the
Columbia River Basalt Group occurred when major oxide chemistry, paleo-
magnetics, and borehole geophysical logging were found useful in identifying
basalt flows.
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2.0 STRATIGRAPHY

This section focuses on the surface and subsurface stratigraphy of the
Columbia River Basalt Group and Ellensburg Formation in the study area. The
stratigraphy is important to delineating structures and reconstructing the
evolution of the Horse Heaven Hills uplift. The stratigraphy of the study
area is shown in figure 3. Pliocene sediments are absent in the study area
such that either the Columbia River Basalt Group or Ellensburg Formation is
unconformably overlain by Pleistocene or Holocene deposits. The surface .
stratigraphy was generally determined from field mapping along the Horse
Heaven Hills uplift (see plate 1), while the subsurface stratigraphy was
determined from borehole data (see appendix B). The stratigraphic
nomenclature for the study area generally follows the usage of Swanson
et al. (1979c) and Myers et al. (1979). Radiometric age dates for the
Columbia River Basalt Group (fig. 3) are from McKee et al. (1977), Watkins
and Baksi (1974), and Long and Duncan (1982). The magnetostratigraphy was
compiled from several studies (fig. 3; Reitman 1966; Van Alstine and
Gillett 1981; Sheriff 1984; Beeson et al. 1985).

2.1 GRANDE RONDE BASALT

The Grande Ronde Basalt (Swanson et al. 1979c) composes up to 85% by
volume 275,000 km3 of the Columbia River Basalt Group, (Reidel et al.
1982). The upper portion of the Grande Ronde Basalt was penetrated by two
boreholes within the study area, the Horse Heaven Test well (see fig. B-11)
and the Moon #1 well (see fig. B-10), which are both located on the Horse
Heaven Plateau (fig. 4). Chemical analyses (see table A-1 in appendix A and
table 2 of text) and borehole geophysical logs indicate that these boreholes
penetrated part of the Sentinel Bluffs sequence of Myers et al. (1979). From
other studies, it has been shown that the Sentinel Bluffs sequence consists
entirely of high Mg0 flows (Long and Landon 1981). From inspection of drill
cuttings from the Moon #1 well and interpretations of the borehole geophys-
ical logs of the Moon #1 well and the Horse Heaven Test well, it appears
that the Vantage Member of the Ellensburg Formation does not overlie the
Grande Ronde Basalt at these two well sites, or that the Vantage Member
interbed is too thin to identify.

2.2 WANAPUM BASALT

The Wanapum Basalt (Swanson et al. 1979c) consists of three members
within the study area. These are (from oldest to youngest) the Frenchman
Springs, Roza, and Priest Rapids Members. The Wanapum Basalt is separated
from the overlying Saddle Mountains Basalt by the Mabton interbed and from
the underlying Grande Ronde Basalt by the Vantage Member where present.
Distinct 1ithologic, chemical, and paleomagnetic differences that occur
among the members aid in their identification. However, a lack of a sig-
nificant variation in the K20 content of these members makes their identi-
fication on natural gamma geophysical logs very difficult. Figure 5 is an
example of a natural gamma log taken from Landon (1985). The mean concen-
trations of K20 were added from Reidel and Fecht (1981), and Long and Landon
(1981). Stratigraphic contacts were defined by Landon (1985).
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Natural Gamma Geophysical Log of Borehole DDH-3 Shown
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River Basalt Group Members.
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2.2.1 Frenchman Springs Member

In the study area, the Frenchman Springs Member has been subdivided
using criteria developed by Beeson et al. (1985). Major oxide and trace
element compositions, paleomagnetics, and physical characteristics are used
to divide this member into six stratigraphic units.

In the study area, only the upper stratigraphic units of the Frenchman
Springs Member (i.e., basalts of Sand Hollow and Sentinel Gap) are exposed
along the Horse Heaven Hills uplift. However, the Moon #1 and Horse Heaven
Test wells on the Horse Heaven Plateau penetrated the entire Frenchman
Springs section (see fig. B-10 and B-11). In these two wells, flows
belonging to the basalts of Ginkgo, Silver Falls, Sand Hollow, and Sentinel
Gap are present. Along the Horse Heaven Hills, the uppermost Frenchman
Springs flows are either directly overlain by the Roza Member or the Squaw
Creek interbed. These exposed upper Frenchman Springs flows are not
separated by sedimentary interbeds, although an hyaloclastite is observed at
the base of the uppermost Frenchman Springs flow along the Chandler
anticline (NE1/4SW1/4 sec. 20, T. 9 N., R. 26 E.). In the Moon #1 and Horse
Heaven Test wells, the Frenchman Springs Member is overlain by either the

Priest Rapids Member or the Quincy interbed and underlain by the Grande
Ronde Basalt.

The upper Frenchman Springs flows exposed along the Horse Heaven Hills
uplift all have entablature-dominated jointing patterns with some flows
having a flow top breccia up to 7 m thick. The flow top breccias contain
basalt of a pahoehoe texture meshed with massive, angular clasts of basalt.
Orill cuttings and borehole geophysical logs from the Moon #1 well indicate
the presence of up to 13 m of flow top breccia in individual Sentinel Gap
flows and up to 10 m in certain Sand Hollow flows. The hackly entablature
flows of the Sentinel Gap and Sand Hollow form talus slopes of angular
clasts that weather to a distinctive rust brown color. The basalt colonnade
is very thin and is more gray in color relative to the entablature.

In hand sample, the Sentinel Gap and Sand Hollow flows have a black,
fine-grained to glassy, and usually aphyric groundmass. An unknown black
filling (possibly a mineraloid) is found locally in small circular vesicles
in the entablature. Sparse tabular plagioclase phenocrysts up to a
centimeter in length were found in these upper flows.

Data from the chemically analyzed Frenchman Springs Member fall within
expected ranges of major oxide concentrations for the Frenchman Springs
chemical type of Wright et al. (1973). Generally, the Frenchman Springs
Member has distinctive Pp0g5 and Ti0p concentrations that help differentiate
it from other Columbia River Basalt Group flows (see table 2). Small
variations in P20g5, Ti0p, and chromium concentrations, as well as
stratigraphic position, help differentiate Frenchman Springs flows from each
other. The Ginkgo flows have relatively higher P05 concentrations and
lower chromium concentrations. The basalt of Sand Hollow has a lower P20g
and Ti0p concentration and a higher chromium concentration. Finally, the
basalt of Sentinel Gap has an intermediate P05 value and a lower chromium
value similar to the basalt of Silver Falls, but can be differentiated from
the basalt of Silver Falls on the basis of the stratigraphic position.
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2.2.2 Roza Member

Along the Horse Heaven Hills uplift, the Roza Member is composed of one
or two flows, or flow lobes. The occurrence of the two flows appears to be
more common in the western portion of the Horse Heaven Hills uplift. The
Roza Member locally has a pillowed base, more commonly in the Byron Road
area (center SW1/4 sec. 23, T. 8 N., R. 23 E.) where it is thickest (»5 m)
and overlies a thin section of sediment that contains fragments of petrified
wood. The Roza Member is overlain by either a thin sedimentary interbed or
a flow of the Priest Rapids Member.

Outcrops of the Roza Member are commonly spheroidally wea?hered. The
blocky basal colonnade of the Roza is locally platy jointed, with sheet
fractures oriented perpendicular to the columns.

Fresh samples of the Roza Member have a medium-grained groundmass, are
a dark gray color, and contain large (+1 to 2 cm), abundant, colorless to
orange-yellow phenocrysts and glomerocrysts of plagioclase. The presence gf
these phenocrysts make the Roza Member an excellent stratigraphic marker in
the field, although local occurrences have been found elsewhere where
phenocrysts are absent (Myers 1973). The groundmass, where weathered, has
the appearance of being coarse grained.

The major oxide composition of the Roza Member (see table 2) 1lies
within the Frenchman Springs Member chemical type of Wright et al. (1973).
The Roza Member cannot be distinguished from flows of the Frenchman Springs
Member solely on the basis of its major oxide composition.

2.2.3 Priest Rapids Member

The Priest Rapids Member (Mackin 1961) is dated at «14.5 m.y.B.P. In
the Horse Heaven Hills, the Priest Rapids Member is overlain by the Mabton
interbed and underlain by either the Quincy interbed or Roza Member. Within
the study area, the Priest Rapids Member contains two distinct chemical
types, an older Rosalia flow chemical type (Swanson et al. 1979c) and a
younger Lolo flow chemical type (Wright et al. 1973). Although both
chemical types are found within the study area, the flow of the Rosalia
chemical type may be locally absent along the Horse Heaven Plateau as
interpreted from borehole geophysical logs (see fig. B-10 and B-11).
Multiple flow units of Rosalia composition were found along the Horse Heaven
Hi1ls uplift, but only a single Lolo flow was found. However, on the Horse
Heaven Plateau, it is interpreted from borehole geophysical logs and major
oxide chemistry (see fig. B-10 and B-11; table 2) that the Moon #1 and Horse
Heaven test wells penetrated two flow units of the Lolo chemical type.
Locally, a discontinuous sedimentary interbed of the Ellensburg Formation,
the Byron interbed, is present between the Rosalia and Lolo flows.
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Outcrops of the flows of the Priest Rapids Member along the Horse
Heaven Hills uplift are usually characterized by spheroidal weathering.
Less weathered outcrops reveal a hackly entablature overlying a well-
developed basal colonnade. The basal colonnade is often characterized by
platy jointing oriented subparallel .to the dip of the flows.

Fresh hand samples of the Priest Rapids Member are medium-grained to
glassy. However, a highly weathered groundmass appears coarse. The Lolo
flow contains sparse plagioclase phenocrysts and glomerocrysts.

Both flows are chemically distinct from each other (see table 2). The
Rosalia chemical type has higher Ti0» and lower Mg0 concentrations than the
Lolo chemical type.

2.3 SADDLE MOUNTAINS BASALT

Within the study area, the Saddle Mountains Basalt is represented by
five members (see fig. 3). They are from oldest to youngest, the Umatilla,
Esquatzel, Pomona, Elephant Mountain, and Ice Harbor Members. Members of
the Saddle Mountains Basalt have diverse Tithologies, major oxide
concentrations, and paleomagnetic polarities that easily distinguish them
from each other and from other Columbia River Basalt Group flows found
within the study area. In addition, variations in Kp0 concentrations
between the flows of the Saddle Mountains Basalt members make natural gamma
geophysical logs a useful tool in identifying these flows in the subsurface
(see fig. 5).

2.3.1 Umatilla Member

In the study area, the Umatilla Member (Laval 1956) consists of the
older Umatilla flow and the younger Sillusi flow (ARHCO 1976). The member
directly overlies the Mabton interbed and underlies either the Cold Creek or
Selah interbeds (see fig. 3).

Along the Horse Heaven Hills uplift, outcrops of the flows of the
Umatilla Member are entablature-dominated. The hackly entablatures commonly
weather to a reddish brown color and form talus composed of angular clasts.
The basal portion of the flows are blocky jointed with thin, slabby to
prismatic plates, and contain large almond-shaped vesicles near the lower
contact. The basal portion is locally oxidized to a dark red. A highly
distinctive, thick, rubbly flow top that is composed of scoriaceous and
massive basalt clasts locally accompanies the flows of the Umatilla member
(fig. 6). Outcrops of the Umatilla Member are similar in appearance to the
flows of Sand Hollow and Sentinel Gap of the Frenchman Springs Member.

Fresh hand samples from the entablature of the Umatilla Member flows
are black, fine-grained, aphyric, and fracture conchoidally. Small
plagioclase crystals (<1 mm in length) are locally present along with widely
spaced vesicles filled with a black to gray mineraloid. Towards the base of
the flows, samples appear to be medium grained, bluish gray, and contain
small plagioclase crystals «~1 mm in length.
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The major oxide composition of both flows of the Umatilla Member (see
table 2) is quite distinctive from other Columbia River Basalt Group flows
in the study area because it contains relatively higher P20g5, Si0z, K20, and
Tower Mg0, and both flows fall within the Umatilla chemical type of Wright
et al. (1973). The Sillusi flow can be distinguished from the Umatilla flow
by the relatively lower Ti0p and Mg0, and higher P05 concentrations (see
table 2; Reidel and Fecht 1981). The high K0 concentration of both flows
provides an excellent signature in the natural gamma geophysical logs
(fig. 5), aiding in the member's identification in boreholes.

2.3.2 Esquatzel Member

Within the study area, the Esquatzel Member consists of one flow that
lies beneath the Pomona Member or Selah interbed and above the Cold Creek
interbed of the Ellensburg Formation (see fig. 3).

Exposures of the Esquatzel Member are rare, but where exposed, the
basalt colonnade displays platy jointing and vesicles oriented parallel to
the dip of the flow. Hackly entablature overlies the columns and grades
into an oxidized pahoehoe flow top. Esquatzel Member outcrops weather to a
distinctive brown color.

Fresh hand samples of the Esquatzel Member gathered from either the
colonnade or entablature are gray-black to black in color (darker in the
entablature) and microphyric with sparse lath-shaped plagioclase phenocrysts
found in the entablature (<3 mm in length). The groundmass of the
entablature has a more glassy texture than the colonnade; it commonly
fractures conchoidally and contains local diktytaxitic zones.

The major oxide composition of the Esquatzel Member (see table 2) lies
within the Esquatzel chemical type defined by Swanson et al. (1979c). The
flow is distinguished by its intermediate P05 and Ti0p. The K0
concentration of the Esquatzel Member lies between that of the Pomona and
Umatilla Members aiding in its identification in natural gamma geophysical
logs (see fig. 5).

2.3.3 Pomona Member

The Pomona Member (Schmincke 1967c) is overlain by the Rattlesnake
Ridge interbed and usually is underlain by the Selah interbed (see fig. 3)s
but also directly overlies the Umatilla Member where the Selah interbed,
Esquatzel Member, and Cold Creek interbed are absent (e.g., Sunnyside-
Grandview area).

The Pomona Member consists of one to three flow units. Two flows or
flow lobes of the Pomona Member have been previously mapped and described in
the Pasco Basin and eastern portion of the study area (Bond et al. 1978;
Myers et al. 1979). Bond et al. (1978) named the upper flow unit the
"Chandler flow" and proposed a source vent for it along the Badlands
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anticline (sec. 8, 7. 9 N., R. 26 E.) based on the presence of pumicg and
pyroclastic material at this location. This interpretation was dismissed by
Myers et al. (1979) because, based on its distribution, the "Chandler flow"
would have flowed upslope. Further investigation of the Badlands "yent"
area indicates it is a linear, low-amplitude anticline, and the pumiceous
and pyroclastic material is more 1ikely formed from steam-generated
spiracles derived from the interaction of the Pomona lava and water. No
evidence was found to support the existence of two separate Pomona flows
within the study area.

Outcrops of the Pomona Member along the Horse Heaven Hills uplift
display a distinctive jointing style. Overlying the thin basal colonnade
are straight to curved, narrow prismatic columns (fig. 7). These narrow
columns of the entablature are locally tiered and may be separated by
vesicular zones. At Chandler Butte (SE1/4 sec. 21, T. 9 N., R. 26 E.) the
Pomona Member is interpreted to form invasive dikes in the Selah interbed.
These dikes are composed of curved and slender columns (such as the
entablature) that are oriented horizontally and are interpreted to have
formed perpendicular to the basalt-sediment contact. Locally emanating_from
the dikes are smaller, sinuous, chilled "dikelets" that merge and mix with
the sediment forming peperites similar to those described by Schmincke
(1967a). Talus derived from the Pomona entablature is very distinctive
since it tends to be uniform in both angularity and size. Locally, a fused
tuff of the Selah interbed directly underlies the Pomona Member. In poorly
exposed areas, float from the bluish-gray and black fused tuff helps
approximate the Pomona-Selah contact.

In hand sample, the groundmass of the Pomona Member is a distinctive.
grayish black and varies from medium to fine grained. The Pomona Member is
phyric, containing small plagioclase phenocrysts which display equant
slender tabular habits.

The chemical composition of the Pomona Member (see table 2) falls
within the Pomona chemical type of Wright et al. (1973). The Pomona Mem?er
is marked by a lower P205 and Ti02, and higher Mg0 and Ca0 content relative
to other Columbia River Basalt Group flows in the study area. In addition,
the Pomona Member's low, uniform K70 content produces a distinctive
signature on natural gamma geophysical logs (see fig. 5).

2.3.4 Elephant Mountain Member

The Elephant Mountain Member consists of two separate flows, the older
Elephant Mountain flow of Waters (1955) and the younger Ward Gap flow of
Schmincke (1967c). In the study area, the Elephant Mountain Member is
commonly the uppermost Columbia River Basalt Group unit in field sections
and is usually directly overlain by either Ellensburg Formation sediments,
glaciofluvial deposits, or the Ice Harbor Member, and is directly underlain
by the Rattlesnake Ridge interbed (see fig. 3).
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Weathered outcrops of the Elephant Mountain Member are commonly gray to
reddish brown in color. Spheroidal weathering also occurs in the blocky
basal colonnade, which produces large rounded remnant boulders. Locally,
pipe vesicles are found at the base of the flows.

Fresh hand samples of the Elephant Mountain Member are black, fine
grained, and locally diktytaxitic. It is readily apparent in direct
sunlight that the rocks are abundantly microphyric. Larger-sized
plagioclase phenocrysts are rare.

The two flows of the Elephant Mountain Member are readily distinguished
from other Columbia River Basalt Group flows in the study area by their
characteristically lower Si0p, intermediate P05, and higher Ti0p
concentrations (see table 2). On the basis of these major oxide
compositions, the two flows of the Elephant Mountain Member are
indistinguishable from each other. Thus, they are recognized only by
stratigraphic position and not delineated in the mapping. The Elephant
Mountain Member has an intermediate K0 concentration that is reflected in
natural gamma geophysical log signatures (see fig. 5), and distinguishes it
from the other Columbia River Basalt Group flows.

2.3.5 Ice Harbor Member

The Ice Harbor Member consists of three flows (Swanson et al. 1979c).
These are (from oldest to youngest) the basalts of Basin City, Martindale,
and Goose Island. No outcrops of the Ice Harbor are found along the Horse
Heaven Hills uplift within the field mapping area, but other mapping in the
vicinity of the uplift (Bond et al. 1978; Myers et al. 1979; Jones and
Landon 1978; Gardner et al. 1981) and borehole data from this study indicate
that only the Martindale flow is present within the study area (outside of
the Horse Heaven Hills uplift). The Martindale flow directly overlies the
Elephant Mountain Member or the Levey interbed.

The Martindale flow of the Ice Harbor Member can be distinguished from
the Elephant Mountain Member on natural gamma geophysical logs as a direct
reflection of their differing Ko0 contents (see fig. 5).

2.4 ELLENSBURG FORMATION

The Ellensburg Formation (Russel 1893) consists of sediments
interbedded with, and overlying, the Columbia River Basalt Group in the
western and central Columbia Plateau (Rigby et al. 1979; Swanson et al.
1979c). Although the upper and lower boundaries of the Ellensburg Formation
are not well defined, it is generally considered that the lower portion of
the Ellensburg Formation includes sediments interbedded with and conformably
underlying the Columbia River Basalt Group in the western part of the
Columbia Plateau (Bentley et al. 1980a; Waitt 1979). The upper boundary in
the Toppenish Basin is considered to be the sediment conformably overlying
the Columbia River Basalt Group and unconformably underlying Pliocene and
Quaternary rocks (Bentley et al. 1980a). In the Pasco Basin, it has been
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indicated the upper boundary of the Ellensburg Formation is overlain by the
Ice Harbor Member (Myers et al. 1979) but has also been at the top of the
late phase of the Snipes Mountain conglomerate (Fecht et al. 1985).
Farooqui et al. (1981) designated coeval sediments above the Columbia River
Basalt Group in Oregon as belonging to the Dalles Group and sediments
interbedded with the Columbia River Basalt Group as belonging in the
Ellensburg Formation. Since the base of the Columbia River Basalt Group is
inaccessible in the study area, for the purposes of this study the
Ellensburg Formation is defined as including all sedimentary rocks
interbedded and conformably overlying the Columbia River Basalt Group (but
does not preclude sediments underlying the Columbia River Basalt Group).

The Ellensburg Formation within the study area consists of one formal
member, the Squaw Creek Member (Swanson et al. 1979c), and ten informal
members: Quincy interbed, Byron interbed, Mabton interbed, Cold Creek
interbed, Selah interbed, Rattlesnake Ridge interbed, Levey interbed, early
and late phase of the Snipes Mountain conglomerate, and the McBee
conglomerate (see fig. 3). The Vantage Member of the Ellensburg Formation
was formalized by Swanson et al. (1979c) as well, but has not been found
within the study area. The Ellensburg Formation interbeds are defined and
identified on the basis of the identities of bounding Columbia River Basalt
Group flows (Schmincke 1967c; ARHCO 1976; Myers et al. 1979; Swanson
et al. 1979c) and not on the basis of their Tithologic characteristics.
However, both 1ithology as well as stratigraphic position are used to
identify the Snipes Mountain conglomerate and McBee conglomerate. Borehole
geophysical logs can be used to identify the sedimentary interbeds of the
Ellensburg Formation which are intercalated with the Saddle Mountains Basalt
since the Saddle Mountains Basalt flows are easily identified on the logs.

2.4.1 Squaw Creek Member

The Squaw Creek "Diatomite Bed" was assigned to lie beneath the Roza
Member and designated as part of the Frenchman Springs Member by Grolier and
Bingham (1966), but was later reassigned to the Ellensburg Formation as the
Squaw Creek Member (Swanson et al. 1979c)

In the study area, the Squaw Creek Member is a discontinuous interbed
which lies between the Roza Member and Frenchman Springs Member (see
fig. 3), and is locally exposed west of Prosser along the Horse Heaven Hills
uplift. Near Byron Road (center SW1/4 sec. 23, T. 8 N., R. 23 E.) the
interbed is composed of tuffaceous silts containing fragments of petrified
wood and is overlain by 5 m of Roza Member pillow basalts.
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2.4.2 Quincy Interbed

The Quincy interbed, as defined by ARHCO (1976), lies between the
Priest Rapids Member and the Roza Member, but for the purpose of this
study, includes sediment between the Priest Rapids Member and the next older
basalt flow. Along the Horse Heaven Hills uplift, only one outcrop of the_
Quincy interbed was found (SW1/4 NW1/4 sec. 14, T. 8 N., R. 24 E.). At this
location, it is composed of opalized material, petrified wood, and some
tuffaceous sediment. The interbed here is less than several meters thick.
In the Horse Heaven Test well (see fig. B-11) on the Horse Heaven Plateau
(see fig. 4), no Roza Member and possibly no Rosalia chemical type flows of
the Priest Rapids Member are present based on chemical analyses. Here,
nearly 20 m of sediment is interpreted to lie between the Lolo flow of thg
Priest Rapids Member and the Frenchman Springs Member, and by definition is
considered to be the Quincy interbed.

2.4.3 Byron Interbed

Along the Horse Heaven Hills uplift near Prosser, a discontinuous, thin
interbed is found between the Rosalia and Lolo flows of the Priest Rapids
Member. The interbed variably consists of a baked tuff, opalized material
embedded with petrified wood, or tuffaceous sediment that contains fragments
of petrified wood. This interbed has been noted elsewhere in the central
Columbia Plateau (Reidel 1978; Taylor 1976; Jones and Landon 1978; Bentley
et al. 1980a) and is here informally named the Byron interbed for a 0.5-m-
thick section exposed along Byron Road (SE1/4SE1/4 sec. 23, T. 8 N.,

R. 23 E.) south of the old townsite of Byron.

2.4.4 Mabton Interbed

Sediment directly underlying the Umatilla Member and found along the
Horse Heaven Hills south of Mabton, south-central Washington, was named the
Mabton interbed by Laval (1956), was renamed the Mabton Member by Schmincke
(1967c), and was later reduced to informal status by Swanson et al. (1979c).
Within the study area, the Mabton interbed lies between the Umatilla Member
and the Priest Rapids Member (see fig. 3). Near the upper contact with the
Umatilla Member, the Mabton interbed is baked and is a distinctive brick-red
color with alternating bluish-gray colored bands that parallel the contact.
The baked zone is relatively erosion-resistant and contains a network of
closely spaced columnar joints aligned perpendicular to the banding
(fig. 8). The interbed, as a whole, usually forms erosional saddles along
the north dip slopes of anticlines within the Horse Heaven Hills uplift.

The Mabton interbed is composed of tuffaceous clays, silts, and sands.
Fluvially deposited sands and pebbly sands of the interbed are commonly
found along the Horse Heaven Hills west of Prosser. These sands contain
quartzite, feldspar, and mica, (identifications were made using hand lens)
which were probably derived from outside the Columbia Plateau.
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2.4.5 Cold Creek Interbed

The Cold Creek interbed was informally named for sediments found in the
Pasco Basin directly underlying the Esquatzel Member (ARHCO 1976; Myers
et al. 1979). In the study area, the Cold Creek interbed lies between the
Esquatzel Member and the Umatilla Member (see fig. 3).

The Cold Creek interbed is poorly exposed along the Horse Heaven Hills
uplift, but where exposed, it is composed of unconsolidated silt. Natural
gamma geophysical logs through the Cold Creek interbed (DNR 79-07 well, see
fig. B-22; Shaw well, see fig. B-31; DDH-3 well, see fig. 5) suggest the
interbed lacks a significant amount of potassium-rich sediments.

2.4.6 Selah Interbed

|

Mackin (1961) named the sediments found between the Pomona Member and
Roza Member the "Selah Member" of the Ellensburg Formation. Schmincke
(1967c) later redefined the "Selah Member" to be the sediments directly
underlying the Pomona Member and overlying the next older basalt flow. This
interbed was later informalized by Swanson et al. (1979c).

[

Following the definition of Schmincke (1967c), the Selah interbed
within the study area lies between the Esquatzel and Pomona Members
(fig. 3), or between the Umatilla and Pomona Members where the Esquatzel
flow is absent.

The Selah interbed consists of sands, silts, tuffs, and conglomerates.
A blue-black to gray, banded, fused vitric tuff (Schmincke 1967b), up to
several centimeters thick, is often found at the contact between the Selah
interbed and the Pomona Member. Float from the fused tuff layer can often
be found on hillsides aiding in locating the upper boundary of the Selah
interbed. A fluvial facies is recognized within the Selah interbed which
consists of a generally poorly indurated conglomerate (fig. 9). The sand
matrix is quartzose and mica rich. The majority of clasts within the
conglomerate are Columbia River basalt (see table 3), but the conglomerate
also contains a significant percentage of plutonic and metamorphic clasts
(»40%). As the clast size increases, the Columbia River Basalt Group
comprises a higher percentage of the clasts, and as the plutonic and
metamorphic rocks (derived from outside the plateau) increase in abundance,
clast size diminishes (see table 3). The size change, along with the
composition of the clasts and sand, reflects distant provenance of the
exotics and local derivation of the basalt. The conglomerate is rarely
cemented by an iron-bearing mineral. At Chandler Butte (SE1/4 sec. 21,
T. 9 N., R. 26 E.) the conglomerate is found adjacent to invasive Pomona
dikes and exposures of hyaloclastite. The hyaloclastite is interpreted to
have formed from the interaction of the fluid Pomona lava with the water-
saturated Selah interbed. Fecht et al. (1985) interpret the Selah
conglomerate as representing the westward extension of the ancestral
Clearwater-Saimon River (ancestral Snake River of Swanson and Wright 19763
see section 3.0). The exposures at Chandler Butte suggest that a paleoriver
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was present here just prior to the incursion of the Pomona Member. Both the
fused tuff and conglomerate within the study area were deposited during the
Esquatzel-Pomona interval (see section 3.0).

A signature "kick" in the natural gamma log is found at the top of the
Selah interbed section in several of the boreholes (see fig. B-2
through B-31). Observations from this study support Brown's (1978) idea
that this signature "kick" represents the vitric tuff found regionally at
the upper contact of the interbed (Schmincke 1967b).

2.4.7 Rattlesnake Ridge Interbed

Thick sediments separating the Pomona and Elephant Mountain Members, or
the upper vitric tuff of the Selah "Member", were named the Rattlesnake
Ridge Member by Schmincke (1967c¢), but the interbed was later informalized
by Swanson et al. (1979c).

Outcrops of the Rattlesnake Ridge interbed are rare along the northern
flanks of the Horse Heaven Hills uplift, because the steeply dipping
interbed acts as a slip plane facilitating slumping. Exposures are more
commonly found along the ridge crests of the Horse Heaven Hills and along
cliffs created by the down-cutting of the Yakima River. Where exposed, the
interbed is 1ight tan, light gray, or off-white in color.

The Rattlesnake Ridge interbed consists of laminated silts and clays,
cross-bedded, ripple-marked, or massively bedded sandstone, or massive
tuffs. The sandstones are locally micaceous and mixed with other heavy
minerals of exotic derivation (from outside the Columbia Plateau). Along
Ward Gap Road, a 2-m-thick conglomerate (see fig. 10; NW1/4NE1/4 sec. 17,

T. 8 N., R. 24 E.), containing nearly 15% quartzitic pebbles and cobbles
(see table 3), conformably overlies the flow top of the Pomona Member and is
itself overlain by a thicker section of laminated siltstone. Based on the
gravel lithologies (see table 3), stratigraphic position, and geographic
lTocation, the conglomerate is here interpreted to have been deposited by the
ancestral Columbia River whose channel is found farther to the north
(Schmincke 1964, 1967a, 1967c; see section 3.0). Absence of a major
component of Columbia River Basalt Group clasts in the conglomerate
indicates that the ancestral Columbia River was not influenced by the
ancestral Clearwater-Salmon River at this time at this location (or to the
north of this location).

2.4.8 Levey Interbed

The Levey interbed consists of those sediments between the Ice Harbor
and Elephant Mountain Members (ARHCO 1976; fig. 3). The Levey interbed is
not found along the Horse Heaven Hills uplift in the study area, but is
found in two of the geophysically logged boreholes (DC-15, DDH-3). The
Levey interbed gives a high natural gamma response in these two boreholes,
and has been described as being composed of tuffaceous silt or siltstone
(Bond et al. 1978; Myers et al. 1979).
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Figure 10. Conglomerate within the Rattlesnake Ridge Interbed
(loc.NW1/4NW1/4 sec. 17, T. 8 N., R. 24 E.).
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2.4.9 Snipes Mountain Conglomerate

The Snipes Mountain conglomerate was informally introduced by Schmiqcke
(1967c) as an areally extensive conglomerate deposit that directly overlies
the Elephant Mountain Member in south-central Washington. The Snipes
Mountain conglomerate is characterized by an abundance of quartzite and
other metamorphic rocks. Schmincke (1967c) attributed the source of the
conglomerate to a sheet deposit of the ancestral Columbia River. Fecht
et al. (1985) divide the Snipes Mountain conglomerate into an early and late
phase (see fig. 3) based on lithology and distribution. The early phase was
deposited between the emplacement of the Elephant Mountain Member and the
Ice Harbor Member (between 8.5 and 10.5 m.y.B.P.) and is coeval with the
deposition of the Levey interbed. The late phase of the Snipes Mountain
conglomerate was deposited after the emplacement of the Ice Harbor Member
and is thought to be coeval with the basal unit of the Ringold Formation of
the Pasco Basin (Fecht et al. 1985). Both phases contain deposits from the
ancestral Columbia River, but from slightly different time intervals and in
different geographic locations, reflecting a diversion of the ancestral
Columbia River (see section 3.0).

Outcrops of both the early and late phases of the Snipes Mountain
conglomerate are identified in the study area based on clast 1ithology and
stratigraphic position, but are tentatively differentiated solely on the
geographic distribution of the conglomerates in accordance with the
distribution specified by Fecht et al. (1985). The early phase of the
Snipes Mountain conglomerate is not found along the portion of the Horse
Heaven Hills uplift that was in the field mapping area, but is found along
the Horse Heaven Hills uplift to the immediate west (Schmincke 1964, 1967a,
1967c; Swanson et al. 1979b; Bentley et al. 1980a) and within the lower
Yakima Valley in the vicinity of Sunnyside, Washington (Campbell 1977; Rigby
et al. 1979). Two outcrops of the late phase of the Snipes Mountain )
conglomerate are tentatively identified along the Horse Heaven Hills uplift.
One occurrence is found along Richards Road (SE1/4SE1/4 sec. 9, T. 8 N.,

R. 24 E.). Here, Snipes Mountain conglomerate is found conformably
overlying the steeply dipping Elephant Mountain Member along the northern
flank of the Drake anticline. The conglomerate occurs in lenses surrounded
by silts and sands. The outcrop was first identified by Schmincke (1964)
who described the Tithology of the clasts (see table 3). The other
occurrence is found along the cliffs at the Gibbon railroad siding

(center NE1/4 sec. 26, T. 9 N., R. 25 E.). Here, the flat-lying Elephant
Mountain Member is overlain by a thin conglomerate (<30 cm thick). No
pebble counts were conducted on this exposure, but the conglomerate appears
to contain a high percentage of plutonic and metamorphic clasts. Thi§
conglomerate is overlain by «»1 m of siltstone. This exposure was assigned
to the Levey interbed by Bond et al. (1978).
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2.4.10 McBee Conglomerate

Another conglomerate, informally named the McBee conglomerate in this
study, was found in two locations along the crest of the Horse Heaven Hills
within the northwest trend. Alongside McBee Grade (SE1/4SE1/4 sec. 23,

T. 9 N., R. 26 E.), the conglomerate is exposed in a gravel pit (fig. 11)
where it appears to overlie the Pomona Member. Laval (1956) described these
gravels at this location to be foreset-bedded with a northwest dip, although
this foreset bedding is not apparent today. Near Webber Canyon (SE1/4SE1l/4
sec. 32, T. 9 N., R. 22 E.), gravels of the McBee conglomerate appear to.
overlie the Elephant Mountain Member. The clasts within the conglomerate at
both locations consist mostly of rounded to subrounded Columbia River Basalt
Group and are considered here to be locally derived (from within the
Columbia Plateau). Further, a majority of the Columbia River Basalt Group
clasts appear to be Pomona basalt. The exact age of the deposit is unknown,
but the McBee conglomerate is tentatively thought to be coeval with the late

phase of the Snipes Mountain conglomerate based on its distribution (see
section 3.0).

2.4.11 Undifferentiated Ellensburg Formation Sediments

Rarely, sediments outcrop along the Horse Heaven Hills uplift that
conformably overlie the Elephant Mountain flow and consist of bedded and
laminated silts and clays (e.g., along the northern flank of the Prosser
anticline, SW1/4 sec. 13, T. 8 N., R. 23 E.), or tuffaceous silts (e.g.,
along the southern 1imb of the Chandler anticline, NW1/4NW1/4 sec. 30,
T. 9 N., R. 26 E.). The exact age of these sediments is unknown (except
that they are post-Elephant Mountain in age), but because of their
conformable relationship to the Elephant Mountain Member and their
Tithologies, they are included in the Ellensburg Formation.

31



RHO-BW-SA-344 P

32

The McBee Conglomerate (loc. SE1/4SE1/4 sec. 23, T. 9 N.,

Figure 11.
R. 26 E.).



RHO-BW-SA-344 P

3.0 STRUCTURE

This section describes the structure of the portion of the Horse Heaven
Hills uplift which encompasses the intersection of the northwest and
northeast structural trends of the uplift. Because of their proximity and
intrinsic relationship with the Horse Heaven Hills uplift, the structure of
portions of the lower Yakima Valley, Horse Heaven Plateau, Badger Coulee,
and Hog Ranch-Naneum Ridge anticline are also described.

3.1 STRUCTURE OF THE IMMEDIATE AREA

Lying between the Rattlesnake-Wallula structural alignment (RAW) and
the Toppenish Basin, and between the Rattlesnake Hills uplift and the Horse
Heaven Hills uplift (fig. 12) is a broad east-west-trending syncline called
here the lower Yakima Valley syncline. The syncline broadens and abruptly
plunges westward towards the Toppenish Basin west of Sunnyside. The lower
Yakima Valley syncline is structurally higher than, and separates the
Toppenish and Pasco Basins as indicated by top-of-basalt elevations from
this and other studies (for the Toppenish Basin - Robbins et al. 1975;
Bentley et al. 1980a; Biggane 1982; for the Pasco Basin - Myers 1981). Low-
relief, generally east-west-and northwest-trending anticlines and monoclines
are superimposed upon the broad syncline (see fig. 12).

Trending approximately north-northwest across the Yakima folds
(fig. 12) is a broad structural arch which generally separates the Yakima
River and Columbia River drainages. The fold system has been referred to in
whole or in part as the Table Mountain anticline (Barrash et al. 1983), the
Naneum Ridge anticline (Campbell 1984), the Naneum High (a coincident
subsurface high, Campbell 1984), the Hog Ranch Axis (Mackin 1961; Bentley
19775 Waitt 1979), the Hog Ranch anticline (Bentley 1977), and the Hog
Ranch-Naneum Ridge anticline (Reidel 1984; used in this study). The Hog
Ranch-Naneum Ridge anticline has been traced north into the Wenatchee
Mountains (Swanson et al. 1979b, Tabor et al. 1982) where basement structure
is involved with the uplift (Campbell 1984; Tabor et al. 1982). The
southern extension of this structure (fig. 12) has been shown to extend as
far as the Rattlesnake Hills on maps (Mackin 1961; Bentley 1977) but has
also been shown to extend to the immediate south of Rattlesnake Hills into
the lower Yakima Valley syncline (Bentley 1977; Waitt 1979; Barrash
et al. 1983; Campbell 1984). Data from this study suggest that the fold may
exist as a buried structure in the lower Yakima Valley.
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The portion of the Horse Heaven Plateau that lies within the study area
is composed of gentle dips from the south flanks of folds along the
northwest and northeast trends of the Horse Heaven Hills uplift. A low-
relief syncline, here named the Piening syncline (see fig. 12), can be
defined on the structure contour map (fig. 13). The southwestern extent of
the syncline is unknown, but may continue to the southwest of the study
area.

Badger Coulee (see fig. 12) is a narrow valley which lies between the
RAW and the northwest trend of the Horse Heaven Hills anticline. Brown
(1979) mapped the valley as a syncline based on borehole data.

3.2 HORSE HEAVEN HILLS UPLIFT

The two structural trends of the Horse Heaven Hills uplift (fig. 16,
N50°-55°W and N65°-70°E) are only generally shown in the structure contour
map (fig. 13), but reflect a superimposed en echelon fold pattern along the
two trends (fig. 14). The folds within the northeast trend are oriented in
a left-stepping sense to the trend while the folds along the northwest trend
are aligned or oriented in a slight right-stepping sense to this trend (see
fig. 14). The asymmetry of the uplift is well displayed in the structure
contour map showing the northward vergence of the folds in both trends.

Based on geometric distinctions between folds, the Horse Heaven Hills
uplift within the study area has been subdivided into six segments
(fig. 15). The names Byron, Gibbon, and Chandler have been applied to
segments in the northeast trend, and Webber and Kiona to segments in the
northwest trend. Another segment, called the Junction segment, covers the
intersection of the two trends. Two types of cross sections have been
constructed to display the fold and fault geometry along the Horse Heaven
Hills uplift: descriptive cross sections which display structure as
observed in the field (see appendix C, fig. C-1 through C-6), and
interpretive geologic cross sections (see fig. 18, 20, 22, 24, 26, and 27).

3.2.1 Byron Segment

The Horse Heaven Hills uplift within the Byron segment consists of two
parallel folds, the Prosser anticline and the Drake anticline (see
fig. 14, 16).

The Prosser anticline is an erosional remnant of a double-hinged,
asymmetric fold (north vergence) with a N70°-80°E trending axial trace.
East of Prosser, the anticline locally plunges to the northeast, at its
northeast end.

The northern 1imb of the Prosser anticline is offset over the southern
1imb of the Drake anticline along the Prosser fault, a high-angle reverse or
thrust fault (fig. 17 and 18). In another location (NW1/4 sec. 12, T. 8 N.,
R. 24 E.), the northern hinge of the Prosser anticline is cut by a normal
fault (see cross section C-C' in fig. 18). Within the "interhinge 1imb"--
that portion of the fold that 1ies between the northern and southern hinge
of a double-hinged fold--a minor thrust fault with only a few meters
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displacement repeats the upper portion of the Frenchman Springs section

(NW1/4SW1/4 sec. 7, T. 8 N., R. 25 E.). Layer-parallel faulting, indicated

by the presence of slickenside striae and fault breccia, are found along

stratigraphic contacts of steeply dipping strata such as observed along the

#magi]la-Se]ah co?tact of the southern 1limb at Ward Gap (NW1/4SE1/4 sec. 20,
'8 Nou Re. 28 Es).

The Drake anticline (see fig. 18) is a subtle, low-relief, asymmetric
(north vergence), double-hinged fold that parallels the Prosser anticline.
Strikes of strata are dichotomous, with the southern 1imb locally oriented
»70° counterclockwise from the axis of the fold while the northern 1imb
parallels the axis (related to movement along the Prosser fault or Tocal
plunging of the anticline??). The Drake anticline either dies out or is
buried beneath surficial sediment both east of Prosser and west of Byron
road.

At one location (NE1/4NE1/4 sec. 16, T. 8 N., R. 24 E.) a high-angle
reverse fault can be traced through the northern hinge of the Drake
anticline (see cross section B-B' in fig. 18). In another location
(NW1/4SW1/4 sec. 11, T. 8 N., R. 24 E.) a tear fault with right-lateral
offset strikes perpendicular to the axis of the Drake anticline (see
fig. 14). The attitude of layering and the presence of tectonically
shattered basalt along the northern front of the Drake anticline suggest
that a thrust or high-angle reverse fault may offset the northern 1imb of
the anticline to the north.

3.2.2 Gibbon Segment

The Horse Heaven Hills uplift within the Gibbon segment consists of two
subparallel folds, the Gibbon anticline and the Phelps anticline-monocline
{(fig. 14, 19)

The Gibbon anticline is an eroded, asymmetric fold (north vergence)
which may be locally double hinged. The trace of the anticlinal axis
generally trends N.70°E., but locally deviates from this trend. The crestal
area of the Gibbon anticline is marked by a local structural dip in the
center of the segment that is interpreted to coincide with a less deformed
portion of the Gibbon anticline. To the east, the anticline dies out onto
the south flank of the Chandler anticline. The western end of the anticline
plunges beneath landslide debris to the south of Prosser obscuring its
structural relationship with the Gibbon anticline. However, based on the
last traceable portions of the Gibbon and Prosser anticlines, the Gibbon
anticline appears to be en echelon with the Prosser anticline.

A thrust or high-angle fault (the Gibbon fault, fig. 20) is interpreted
to 1ie below the northern 1imb of the Gibbon anticline and is locally
manifested by tectonically shattered basalt along the northern 1imb of the
anticline. At one location (NE1/4SW1/4 sec. 33, T. 9 N., R. 25 E.) the
hinge zone is cut by a thrust fault (see cross section D-D' in fig. 20). At
another location (see cross section G-G' in fig. 20), a high-angle fault has
been mapped by Bond et al. (1978) along and parallel to the crest of the
Gibbon anticline at its extreme northeastern end. No tear faults across the

43



RHO-BW-SA-344 P

SOUTH NORTH
D GIBBON ANTICLINE | _PHELPS ANTICLINE? e
T T Y )

600 Ssema ' Tp PHELPS [~

//‘/
200 Tr
I il

LA e
_%/Tes Yorma GIBBON FAULT it |

400-@-/
Tpr

\

Tema

Tes

= :LTJT:?IS:

pr
»

T"%Tes Tp “Ter [
e

0
E GIBBON ANTICLINE PHELPS ANTICLINE  E’
- “'ern Tp nlle N
6004 / T GIBBON PHELPS[
= FAULT FAULT |
5400‘ Tema| [~
-
w — —
G A\
= 200 \ n
o Tem
g — A’ A;Ter
2
zZ o
s
w F GIBBON ANTICLINE PHELPS ANTICLINE F’
g 600]'— Tem A k
< Tp /Tema Tu
g . Ta Tr Tema TesTpm B
=) Tor / / / / s PHELPS FAULT
% 400 /
>
E - T
| VALl Tor ) :
. Tgr F — Tp \Ter  Tess [*
0 -
G GIBBON ANTICLINE CHANDLER ANTICLINE G’
T Tem v i T
Ter Tp Tem
600 £/ o ik Ter "
4 )
400—_1)5:—’—1—
;\Teman'
200
d\Tr T 4
0
0 500 METERS
PS8509-160
Figure 20. Interpretive Geologic Cross Sections through the Horse
Heaven Hills Uplift within the Gibbon Segment (see fig. 17 for legend
and fig. C-2 for corresponding descriptive geologic cross sections).
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uplift were observed directly, but such faults may be present between the
areas represented by the cross sections F-F' and G-G' (see fig. 20) due to
the difference in degree of fold development between these two areas.

To the immediate north of the Gibbon anticline is a subparallel fold
which is an anticline at the west end but changes to a monocline at its east
end. Thus the fold is named the Phelps anticline and Phelps monocline,
respectively. The Phelps anticline is an erosional remnant of a low-relief,
asymmetrical anticline (north vergence; see cross sections D-D', E-E', F-F'
in fig. 20). Both the monocline and anticline have near-vertical northern
limbs and a hinge zone which is reflected in a subtle topographic bench
along their length (see fig. 19) The western extension of the fold is lost
in complex faulting and landslide debris while the eastern end of the fold
either dies out or merges with the Chandler anticline.

The hinge zone of the Phelps anticline and monocline has locally been
obliterated by a fault that offsets the southern limb over the northern
limb. A thrust or reverse fault, the Phelps fault (see fig. 20), is thought
to offset the steep northern 1imb to the north as well. These two faults
have produced a zone of fault breccia, which, along with the presence of
thick sedimentary interbeds on the steeply dipping northern 1limb,
facilitates local slumping. A fault mapped along the Gibbon railroad siding
by Bond et al. (1978) is interpreted as offsetting the Pomona Member and
Selah interbed over the Elephant Mountain Member. Reexamination of this
area leads this writer to interpret the Pomona Member and Selah interbed as
composing a local landslide block that originated from along the northern
1imb of the Phelps monocline and was emplaced overlying the Elephant
Mountain Member.

3.2.3 Chandler Segment

The Horse Heaven Hills uplift within the Chandler segment consists of
one fold, the Chandler anticline (see fig. 14 and 21).

The Chandler anticline is an eroded, asymmetric (north vergence),
subtly double-hinged fold, that trends N 70° E for most of its length but
changes to +N 85° W at its eastern end. To the east, the anticline plunges
in the southern 1imb of the Kiona anticline (see fig. 14) and to the west
the anticline dies out, possibly onto the back of the Phelps monocline.

The Bauder fault (fig. 22) is a reverse fault that is inferred to
offset the northern 1imb of the anticline to the north, based on the
proximity and attitudes of strata observed between the Chandler well and the
northern 1imb of the anticline. Layer-parallel faults are found along the
near-vertical northern 1imb of the anticline in a hyaloclastite at the base
of the Roza Member (NW1/4SE1/4 sec. 20, T. 9 N., R. 26 E.) and within a flow
top of the upper Frenchman Springs flow (NW1/4SE1/4 sec. 20, T. 9 N.

R. 26 E.). Another layer-parallel fault is observed within the Umatilla
Member along the southern 1imb and is characterized by a 5-m-thick zone of
tectonic breccia surrounding more coherent basalt blocks in an anastomosing
Eattern §see cross section G-G' in fig. 20; SE1/4NE1/4 sec. 25, T. 9 N.,

. 5 E.).
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Figure 22. Interpretive Geologic Cross Section through the Horse
Heaven Hi11$ Uplift within the Chandler Segment (see fig. 17 for
legend and fig. C-3 for corresponding descriptive geologic

cross section).

3.2.4 Webber Segment

The Webber segment (see fig. 15) contains two parallel folds (see
fig. 14), one, constituting the topographic ridge crest of the Horse Heaven
Hills, and the other, a lower-relief anticline found to the immediate
northeast (fig. 23). Both folds change geometry from monoclines at the
southeast end of the segment to anticlines at the northwest end of the
segment.

The fold which composes the topographic ridge crest of the Horse Heaven
Hills uplift at the southeastern end of the segment is the Badger Canyon
monocline of Myers et al. (1979) and the Kiona anticline at the northwestern
end of the segment. The Badger Canyon monocline and Kiona anticline have
northeast vergence. The Kiona anticline is interpreted to be a double-
hinged, asymmetric anticline with a southwestern hinge exposed near the
ridge crest but the northeastern hinge obscured by surficial deposits.

A high-angle reverse fault, the Dubé fault (see fig. 14), which
parallels the ridge crest, cuts the southeastern hinge of the Kiona .
anticline (see cross section L-L' in fig. 24) juxtaposing the Priest Rapids
Member of the southwestern hinge against the Elephant Mountain Member of the
southwestern 1imb. Offset decreases along the trace of the fault to the
northwest as indicated by the progressive juxtaposition of younger
stratigraphic units (Priest Rapids Member, Umatilla Member, Pomona Member).
Although no fault was observed at the base of the northern 1limb of ?he
Badger Canyon monocline, one may be present along the base of the Kiona
anticline.
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Figure-23. The Horse Heaven Hills Uplift within the
Northwestern Portion (top) and Southeastern Portion
(bottom) of the Webber Segment.
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The subtle, low-relief fold which parallels the Badger monocline-Kiona
anticline is referred to here as the Webber monocline at its southeastern
end and the Webber anticline at its northwestern end (see fig. 14). Both
folds have northeast vergence. The Webber monocline extends southeast past
Webber Canyon and out of the study area. The northwest extension of the
Webber anticline is lost »4 km northwest of Webber Canyon but is thought to
continue buried beneath surficial deposits as indicated by a subtle
topographic bench in the topography.

A tear fault is interpreted to cut the Webber anticline (SE1/4SW1/4
sec. 29, T. 9 N., R. 27 E.) based on a marked change in the attitude of
layering in two adjacent gullies which cut across the anticline. The more-
northern gully exposes a vertically dipping sequence composed of the Pomona
Member, Selah interbed, and Umatilla Member (southwest to northeast)
penetrated by numerous faults generally oriented subparallel to the
layering. The more southern gully exposes gently dipping layering as shown
in cross section N-N' in figure 24.

Overall there is a progressive southeast to northwest increase in
deformation (increase in strain) within the Webber segment. Both folds
tighten considerably from southeast to northwest; buckling occurs in the
transition from monoclines to anticlines; and the elevation of the crest of
the fold increases from the Badger Canyon monocline to the Kiona anticline.

3.2.5 Kiona Segment

The portion of the northwest-trending Horse Heaven Hills uplift that
Ties within the Kiona segment consists of a single fold, the Kiona anticline
(see fig. 14, 25).

The cross-sectional geometry of the Kiona anticline displays a distinct
change between the northwest and southeast ends of the fold. The Kiona
anticline within the northwest portion of the segment is an eroded, faulted,
broad, double-hinged fold, while the fold in the southeastern portion of the
segment is an eroded, tightly folded, asymmetric anticline. Both folds have
northeast vergence. The anticlinal axis trends N 60°W, but at the northwest
end of the segment the northern 1imb appears to plunge northwest near
Interstate 82, while the crestal portion of the anticline appears to be
continuous with the Kiona anticline in the Junction segment.

The two geometrically distinct portions of the Kiona anticline are
separated by the northeast-trending Sharpe fault which cuts across the
northeastern Timb of the anticline (see fig. 14). In the northwest portion
of the Kiona segment the northern hinge of the Kiona anticline contains
several high-angle reverse and thrust faults (see cross section J-J' in
fig. 26). Fault breccia was also encountered within the core of the
anticline in the southeast portion of the segment (in the Frenchman Springs
Member, SW1/4NE1/4 sec. 23, T. 9 N., R. 26 E.), but it is unclear whether
the breccia represents local thrust faulting within the core of the fold or
whether it is caused by layer-parallel faulting. However, a thrust fault is
tentatively proposed here based on the tightness of the fold (see cross
section K-K' in fig. 26). A reverse fault is inferred at the northern base
of the fold as well.
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Figure 24. Interpretive Geologic Cross Sections through the
Horse Heaven Hills Uplift within the Webber Segment (see
fig. 17 for legend and fig. C-4 for corresponding descrip-

tive geologic cross section).
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Figure 26. Interpretive Geologic Cross Sections through the
Horse Heaven Hills Uplift within the Kiona Segment (see fig. 17
for legend and fig. C-5 for corresponding descriptive geologic
cross sections).

3.2.6 Junction Segment

The Junction segment consists of the mergence of the northwestern end
of the Kiona anticline and the northeastern end of the Chandler anticline
(see fig. 14). The Chandler anticline plunges onto the southern 1imb of the
Kiona anticline within this segment. The strike of the Kiona anticline in
the Kiona segment markedly changes from a northwest strike to a nearly east-
west strike. A representation of the cross-sectional geometry of the Horse
Heaven Hills uplift is shown in figure 27. This figure also shows the broad
asymmetric (north vergence) geometry of the Kiona anticline.

Several tear faults cut across the northern flank of the Kiona
anticline coincident with a marked change in geometry or trend of the
anticline. One left-lateral tear fault, the Chandler fault (see fig. 14),
was inferred by Bond et al. (1978) as crossing the crest of the ridge here
(the Chandler anticline). Mapping for this study, however, indicates that
this fault is probably limited to the northern flank.
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Figure 27. Interpretive Geologic Cross Section through the Horse
Heaven Hills Uplift within the Junction Segment (see fig. 17 for
legend and fig. C-6 for corresponding descriptive geologic

cross section).

One explanation for the change in trend of the Kiona anticline is that
the east-west striking portion of the Kiona anticline may represent the
broad northwest plunging end of the Kiona anticline. Another explanation
may be that the oddly oriented fold resulted from the interaction of
stresses caused by uplift along the northwest and northeast trends.

It remains unclear as to how the Badlands anticline (see fig. 14)
relates structurally with the Kiona anticline. It is aligned with and is
proximal to the northwest-trending portion of the Kiona anticline, but its
possible connection with the Kiona anticline is obscured by landslide
debris.
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4.0 TIMING AND LOCATION OF DEFORMATION

Several proposals in the literature indicate when and in what seguence
the Yakima folds developed. Some proposals also suggest the period when
folding occurred along the Horse Heaven Hills uplift (table F-1) in relation
to other Yakima folds. One suggestion is that most of the uplift along the
Yakima folds developed after 10.5 m.y.B.P. - during late Miocene time and
Pliocene time (Barrash et al. 1983; Bentley 1977; Brown 1970; Kienle
et al. 1978; Swanson et al. 1979b). Other studies (Reidel 1984) propose
that deformation along the Yakima folds has been continuous since at least
middle Miocene time. It is also suggested that the Yakima folds originated
time sequentially, from south to north, across the Columbia Plateau
(Laubscher 1981). Another suggestion is that growth is currently occurring
along the Yakima Folds (Campbell and Bentley 1981; Reidel 1984).

It is the purpose of this section to ascertain the timing of uplift at
the mergence of the northwest and northeast trends of the Horse Heaven Hills
uplift. This is accomplished principally by using isopach maps of
individual Columbia River Basalt Group members and Ellensburg interbeds,
along with paleodrainage maps of the ancestral Columbia River system to
define developing folds at specific times or time intervals. Because of the
absence of a sedimentary record for a portion of the late Miocene and the
Pliocene, the timing and Tocation of growth along the Horse Heaven Hills
uplift during this time can only be inferred from observations of the
present structure. The results will help reconstruct the evolution of the
Horse Heaven Hills uplift as well as provide a detailed example of the
timing of uplift along a set of intersecting northwest-and northeast-
trending Yakima folds. In addition, the timing of development of the Horse
Heaven Hills uplift can then be compared to the timing and development of
other Yakima folds. The timing and location of deformation found within
portions of the lower Yakima Valley syncline and the Horse Heaven Plateau
are also evaluated as a consequence of their intrinsic structural
relationship with the Horse Heaven Hills uplift.

4.1 ISOPACH STUDY

Distribution patterns and thickness trends of Columbia River Basalt
Group flows and sedimentary deposits of the Ellensburg Formation have been
recently outlined for the Pasco Basin and some of the bordering Yakima Folds
(Long and Landon 1981; Myers et al. 1979; Price 1982; Reidel 1984; Reidel
and Fecht 1981, 1982; Reidel et al. 1980, 1983a,b). Variations in thick-
nesses of these stratigraphic units are thought to be controlled by the
interplay of the following four factors (Reidel et al. 1980; Reidel and
Fecht 1981): the volume of each basalt flow; the constructional topography
created by previous basalt flow margins; the effect of uplift and subsi-
dence; and the influence of regional paleoslopes. Reidel and Fecht (1981)
argue that the lateral extent and thicknesses of the basalt flows in the
Pasco Basin are controlled primarily by uplift and subsidence and second-
arily by flow volume, constructional topography, and/or regional
paleaslaopes.
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Flows of the Columbia River Basalt Group generally entered the study
area from the east (Schmincke 1964, 1967a) repeatedly inundating the
paleotopography. These basalt flows were fluid and traversed the Columbia
Plateau within a few weeks (Shaw and Swanson 1970), forming a cast of the
paleotopography at instances of time. Thickness variations of the interbeds
of the Ellensburg Formation in the study area also record the presence of
paleotopography but over longer intervals of time. Isopach maps of indi-
vidual members of the Wanapum and Saddle Mountains Basalts and individual
interbeds of the Ellensburg Formation are constructed for this study (see
fig. 28 through 38) to delineate paleostructures present in the study area.
The isopach maps constructed for Wanapum Basalt members have a lesser
definition due to the presence of fewer measurable exposures along the Horse
Heaven Hills uplift and the difficulty in identifying individual members
from borehole data (see appendix B).

From the isopach maps, several structures appeared recurrently in the
paleotopography: the northwest and northeast trends of the Horse Heaven
Hills uplift; the lower Yakima Valley syncline; the Piening syncline; and
the southern extension of the Hog Ranch-Naneum Ridge anticline.

Uplift along folds of both trends of the Horse Heaven Hills (the
Prosser, Gibbon, Chandler, and Kiona anticlines and the Badger Canyon
monocline) was occurring simultaneously since at least Roza time (see
fig. 28 through 38). However, the portions of the Badger Canyon monocline
and the Kiona anticline that 1ie within the Webber segment were not present
through at least Pomona time. Topographic relief along the Horse Heaven
Hills uplift was extremely low during the emplacement of the Wanapum Basalt
and deposition of the Mabton interbed (see fig. 28 through 30) but was
better expressed during Saddle Mountains time (see fig. 30 through 38) due
to the Tonger time intervals separating basalt flow incursions. A local
structural low separated the Chandler and Kiona anticlines during at least
Pomona time (see fig. 34). Another structural Tow also existed along the
western portion of the Chandler anticline since at least Umatilla time. Its
location is now marked by the overlap of the the Gibbon and Chandler
anticlines. Yet another structural low has existed between the Prosser and
Gibbon anticlines since at least Priest Rapids time. Growth along the Drake
anticline, the Phelps anticline-monocline, and the Webber anticline-
monocline cannot be evaluated from the isopach maps because no strategic
section thicknesses could be measured along these low-relief folds.

The present structural relief observed along the Horse Heaven Hills
uplift developed after Elephant Mountain time. But because of a gap in the
late Miocene and Pliocene stratigraphic record in the study area, it is not
known whether the uplift developed in a relatively uniform process as
suggested for Columbia River Basalt Group time (in this study) or whether
growth occurred more intermittently. Presently, however, relief along both
trends is very similar.
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Recurrent thickening trends in the isopachs indicate the development of
the lower Yakima Valley syncline since at least Roza time. However, the
syncline is not well-defined until Saddle Mountains time (see fig. 31-38).
The syncline generally is aligned parallel with the northeast trend of the
Horse Heaven Hills uplift, with the trace of its axis located near the
present-day Yakima River. The eastern end of the syncline is interpreted to
have been connected with the Pasco Basin, probably south of the emerging
Rattlesnake Mountain (Reidel and Fecht 1981). However, the data are too
sparse to indicate whether during this time other folds along the
Rattlesnake-Wallula structural alignment were present to separate the Pasco
Basin and the lower Yakima Valley syncline.

From the isopach maps of the Umatilla, Esquatzel, and Pomona Members,
and the combined sections of the Cold Creek interbed, Esquatzel Member, and
Selah interbed (see fig. 31-34), it is apparent that the western extension
of the lower Yakima Valley syncline was interrupted by a local eastward-
dipping slope located a few miles west of Prosser in the Grandview-Sunnyside
area. This slope probably represents the presence of the southern extension
of the north-northwest-trending Hog Ranch-Naneum Ridge anticline. However,
there is some question as to whether the Timited westward extent of the
Esquatzel Member (fig. 32) was caused by the presence of the Hog Ranch-
Naneum Ridge anticline or by folds developing along the RAW. The low volume
of the Esquatzel Member cannot be the sole cause of the limited westward
progression of the flow, since the member reached as far west as 120° west
longitude in the next valley to the north via an ancestral river canyon
(Myers et al. 1979). Further definition of the Hog Ranch-Naneum Ridge
anticline can be attained for Pomona time by combining section measurements
from Biggane's (1982) study with those of this study. The east slope of the
the Hog Ranch-Naneum Ridge anticline is less clearly defined in isopach maps
of both the Rattlesnake Ridge interbed and Elephant Mountain Member (see
fig. 35-36), but the west slope of the anticline is delineated by a marked
increase in thickness of the Rattlesnake Ridge interbed and Elephant
Mountain Member. The distribution of the Ice Harbor Member suggests that
the west slope of Hog Ranch-Naneum Ridge anticline was still present during
its incursion, preventing the Martindale flow from entering the lower Yakima
Valley; however this could have been influenced by the presence of folds
along the RAW. It is unclear why the eastern margin of the Hog Ranch-Naneum
Ridge anticline loses its definition after Pomona time. It is possible that
the slope developed eastward forming a broad slope through the lower Yakima
Valley or that the growth along the Hog Ranch-Naneum anticline slowed such
that it was a less prominent topographic feature across the lower Yakima
Valley and, eventually, became buried.

It is apparent from this study that two components of uplift have
occurred since Ice Harbor time within the lower Yakima Valley. The first
was the uplift of the lower Yakima Valley syncline relative to the Toppenish
and Pasco Basins (or subsidence occurred in the two basins relative to the
Tower Yakima Valley syncline), as indicated by the elevation of the top of
the basalt (usually the Elephant Mountain Member) in these three areas:
lower Yakima Valley (this study), Toppenish Basin (Robbins et al. 1975;
Biggane 1982), and Pasco Basin (Myers 1981). The second component that
occurred is that the Tower Yakima Valley syncline was tilted westward into
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its present position. This is indicated on the structure contour map of the
Pomona Member (see fig. 13) and by the progressively-eastward downcutting
through the basalt by the Yakima River. This westward-plunge is in an
opposite direction to that present during portions of the middle- and late-
Miocene time. The cause of this tilting can be hypothesized to be a result
of continued subsidence of the Toppenish basin and/or uplift along the RAW.
The role of the Hog Ranch-Naneum Ridge anticline in the development of the
syncline is not understood, but could be intricately involved.

A local trough appears recurrently in the isopach maps covering the
Horse Heaven Plateau that is coincident with the Piening syncline. The
Piening syncline is not well-defined in the isopach maps until the
emplacement of the Umatilla Member (see fig. 31, 33 through 36). However,
this is probably partially due to less data available for Wanapum time. The
syncline may be elongated in a northeast direction, but the extent of the
syncline along its length in either direction is unknown. From patterns
observed in certain isopach maps (see fig. 31, 33 through 35), it is
possible that the Piening syncline was continuous with the Badger Coulee
area (recall the late development of portions of the Kiona anticline and
Badger monocline within the Webber segment). The Piening syncline may have
also been continuous with the lower Yakima Valley syncline via a structural
Tow in the Horse Heaven Hills uplift just south of Prosser (see fig. 33
and 34). Of special interest is the alignment of the Piening syncline with
the zone of thickening in the lower Yakima Valley syncline in the Prosser
area (see fig. 31, 33-35). This alignment may be coincidental; however
there may also be a relationship between this alignment and the Hog Ranch-
Naneum Ridge anticline trending through both of these areas. The Piening
syncline may actually represent a local basin, formed against the southern
extension of the Hog Ranch-Naneum Ridge anticline.

The north-dipping slope composing the southern 1imb of the Piening
syncline can be roughly delineated from Priest Rapids time through Elephant
Mountain time from the isopach maps. The slope may be indicative of uplift
to the south and may be related to development of the Paterson Ridge uplift
or the southeastern extension of the Horse Heaven Hills uplift.

The thinning of the Priest Rapids Member southward between the Moon #1
well and Horse Heaven test well (see fig. 29) provides the first evidence of
deformation on the Horse Heaven Plateau. These two boreholes are the only
boreholes on the Horse Heaven Plateau in which section thicknesses were
interpreted for members of the Wanapum Basalt. The thickness of the
Frenchman Springs Member does not change between these two boreholes, and
the Roza Member is not present in either of the boreholes. In addition, the
Rosalia flow of the Priest Rapids Member is not present in the Horse Heaven
Test well, but is present in the Moon #1 well and is less than a few meters
thick. It is interpreted that both the Rosalia flow and the Roza Member
were prevented from entering the Horse Heaven Plateau by the presence of the
northwest trend of the Horse Heaven Hills uplift southeast of Webber Canyon,
but the constructional topography which they created in the Badger Coulee
area allowed the Lolo flow to enter the Horse Heaven Plateau after their
emplacement.
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4.2 PALEODRAINAGE

At least three major ancestral rivers are interpreted to have deposited
clastic sediments into the central Columbia Plateau during the Miocene and
Pliocene: the Columbia, Clearwater-Salmon (ancestral Snake River of Swanson
and Wright 1976) and the Yakima River (Warren 194la,b; Waters 19555 Laval
19563 Mackin 1961; Schmincke 1964, 1967a, Tallman et al. 1981; Fecht
et al. 1985). Conglomerates deposited by two of these ancestral rivers, the
Columbia and the Clearwater-Salmon Rivers, are found within the study area
in the Selah and Rattlesnake Ridge interbeds and in the early- and late-
phase Snipes Mountain conglomerate. By tracing outcrops of these
conglomerates through the study area (and using data adjacent to the study
area), paleodrainage patterns are constructed (fig. 40 through 43) for
specific time intervals (i.e., the time between the emplacement of two
basalt flows) which can then be used to infer the presence and location of
regional paleoslopes, local structure, and basalt flow margins. In this
study, the paleodrainage patterns, in conjunction with the isopach data, are
primarily used to delineate areas of structural uplift or subsidence that
affected the courses of the ancestral rivers.

Before discussing the structural implications of the paleodrainage
patterns, it is necessary to briefly construct the general paleodrainage
patterns in the vicinity of the study area from just prior to Esquatzel time
through the time of deposition of the late phase of the Snipes Mountain
conglomerate.

Preceding Esquatzel time, the ancestral Clearwater-Salmon River was
flowing westward across the northern Pasco Basin (see item a in fig. 39).
The river exited to the west of the Pasco Basin via a channel located north
of Rattlesnake Hills on Yakima Ridge (Goff and Myers 1978). When the
Esquatzel flow entered the Pasco Basin, the ancestral Clearwater-Salmon
River was displaced to the southern edge of the flow and directed into the
Tower Yakima Valley syncline (see item a in fig. 39). The river then flowed
westward, possibly flowing into the Toppenish Basin where it met the
ancestral Columbia River. Upon the emplacement of the Pomona Member, the
ancestral Clearwater-Salmon River was forced out of the lower Yakima Valley,
while the ancestral Columbia River established a course south across the
Yakima Valley (see item b in fig. 39). The ancestral Columbia River did not
progress laterally to the east past the present-day location of Grandview,
but deposited gravels in a great swath to the west (Schmincke 1964, 1967a).
It is speculated that at this same time the ancestral Clearwater-Salmon
River was diverted to along the southern flow margin of the Pomona flow.
This idea is based on the observation that there is a lack of Clearwater-
Salmon River lithologies in the Rattlesnake Ridge conglomerate and only
clasts characteristic of the ancestral Columbia River are present (see
section 2.0). Thus, the two rivers did not meet in, or to the north of, the
Yakima Valley. During the Elephant Mountain-Ice Harbor interval, the
ancestral Columbia River reestablished itself in approximately the same
course as during the Pomona-Elephant Mountain interval. Again, the
ancestral Columbia River did not laterally progress to the east past the
present-day Grandview area (see item c in fig. 39), but deposited gravels
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Figure 39. Summary of the Paleodrainage of the Ancestral Columbia

and Clearwater-Salmon Rivers through the Columbia Plateau, after

Fecht et al. (1985), Preceding Esquatzel Time to the Late Phase of
the Snipes Mountain Conglomerate Time. (sheet 1 of 2)
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Figure 39. Summary of the Paleodrainage of the Ancestral Columbia
and Clearwater-Salmon Rivers through the Columbia Plateau, after
Fecht et al. (1985), Preceding Esquatzel Time to the Late Phase of
the Snipes Mountain Conglomerate Time. (sheet 2 of 2)
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over a wide area to the west. Sometime between Elephant Mountain and Ice_
Harbor time, the ancestral Columbia River was diverted into the Pasco Basin
north of the lower Yakima Valley.

Some suggested causes of the diversion of the ancestral Columbia River
are the combined uplift and subsidence of the Hog Ranch-Naneum Ridge
anticline and Pasco Basin, respectively (Goff and Myers 1978; Fecht
et al. 1985), the rise of the Horse Heaven Hills (Warren 1941b), the
emanation of volcaniclastic fans from the Cascades (Waters 1955), and the_
rise of Umtanum Ridge (Schmincke 1964). Regardless, the ancestral Columbia
River upon entering the Pasco Basin was diverted back into the lower Yakima
Valley along the northern flow edge of the Ice Harbor Member and along the
rising Horse Heaven Hills uplift (see item d in fig. 39) for a short period
of time, before finally establishing itself within the Pasco Basin (Fecht
et al. 1985).

[t is not known when the ancestral Yakima River established itself in
the lower Yakima Valley, but it is speculated by Fecht et al. (1985) that
this occurred at nearly the same time the ancestral Columbia River
reestablished itself into the Pasco Basin.

Three major structures delineated within the study area using the _
paleodrainage patterns are the Horse Heaven Hills uplift, the lower Yakima
Valley syncline, and the Hog Ranch-Naneum Ridge anticline. -

The northeast-trending portion of the Horse Heaven Hills uplift was a
topographic barrier that controlled both the ancestral Clearwater-Salmon and
ancestral Columbia Rivers within the lower Yakima Valley syncline during the
Esquatzel-Pomona time interval and during deposition of the late phase of
the Snipes Mountain conglomerate, respectively (see fig. 40 and 43). The
ancestral Clearwater-Salmon River was controlled by the northern edge of the
Horse Heaven Hills uplift over an area that is presently occupied by the
Phelps anticline-monocline and the Drake anticline (see fig. 40), indicating
either the absence or the low relief of these folds during this time. The
uplift also diverted the ancestral Columbia River westward from its
southward course across the lower Yakima Valley during both the Pomona-
Elephant Mountain interval and the Elephant Mountain-Ice Harbor interval
(see fig. 41 and 42).

The northwest trend of the Horse Heaven Hills uplift affected the
course of the ancestral Clearwater-Salmon River during the Esquatzel-Pomona
interval and an intraplateau tributary stream (to the ancestral Columbia
River) of post Ice Harbor time (see fig. 40 and 43). A fold coincident with
a portion of the Kiona anticline (within the Kiona segment), in coordination
with the Esquatzel flow, diverted the ancestral Clearwater-Salmon River into
a local structural low in the uplift around its southwestern flank (see
fig. 40). The tributary stream of the ancestral Columbia River was probably
pinched between the western flow edge of the Ice Harbor Member and the
northwest trend of the uplift (see fig. 43). The location of the
conglomerate deposited by this stream (along the crest of the Kiona
anticline and Badger Canyon monocline) suggests that they were located along
undeveloped portions of the uplift.
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Two structural lows within the Horse Heaven Hills uplift during the
Esquatzel-Pomona interval are delineated from the paleodrainage pattern of
the ancestral Clearwater-Salmon River (see fig. 40). One was a former
structural low found locally along the northwest trend of the uplift
approximately where the folds in the Webber segment are now located. The
other local structural low separated the northwest and northeast trends of
the uplift (now occupied by Chandler Butte). These former structural Tows
are now located at the ridge crests of the Horse Heaven Hills uplift.

The southern extension of the Hog Ranch-Naneum Ridge anticline in the
Tower Yakima Valley was a controlling factor for the course of both the
ancestral Clearwater-Salmon River and the ancestral Columbia River. The
trace of the ancestral Clearwater-Salmon River (Esquatzel-Pomona interval)
deposits are not found west of Prosser (see fig. 40); this anticline
coincides with a marked decrease in thickness of the Selah interbed. One
explanation is that the river may have encountered the Hog Ranch-Naneum
Ridge anticline and eventually cut across the anticline, entering the
Toppenish Basin via a channel. An alternative to this hypothesis is that
the river was diverted south across the Horse Heaven Hills uplift near
Prosser, but this idea is dismissed because of the absence of any fluvial
deposits or eroded channels along the crest of the uplift. Evidence is also
found for the presence of the Hog Ranch-Naneum Ridge anticline during the
Pomona-Elephant Mountain and Elephant Mountain-Ice Harbor intervals. During
both intervals, the ancestral Columbia River was flowing south across the
lower Yakima Valley (see fig. 40 and 41). The eastward migration 1imit of
the ancestral Columbia River during these two time periods was »119°50' west
longitude, suggesting that the Hog Ranch-Naneum Ridge anticline may have
confined the river to the west of the 119°50' west longitude. The Hog
Ranch-Naneum Ridge anticline may have controlled this river in coordination
with the subsidence of the Toppenish Basin.

The presence of conglomerates along or near the present ridge crest of
the Horse Heaven Hills uplift (e.g., conglomerates of the Selah interbed and
the McBee conglomerate, see fig. 40 and 43) on first impression would seem
to indicate that the area was a low. This is locally true (e.g., between
Chandler anticline and the Kiona anticline), however, in other areas (e.g.,
Chandler anticline), it is apparent from the trace of the gravel trains and
isopach maps, that these crestal outcrops were controlled by structural
highs associated with present structures but whose topographic crests were
located slightly to the south of their present position. Thus, it is
possible that the crestal portions of the folds have migrated with time to
their present position and elevated the conglomerate.
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5.0 GROWTH RATES

In certain studies, various growth rates of between 100 and
1,500 m/m.y. are roughly estimated for specific Yakima folds or the Yakima
folds as a whole during post Columbia River Basalt Group time (see
appendix F, table F-2). Other studies in the vicinity of the Pasco Basin
use variations in thicknesses of Columbia River Basalt Group flows and
sedimentary interbeds at "instances in time" to calculate vertical growth
rates of between 40-250 m/m.y. from Columbia River Basalt Group time to the
present (see table F-2). The latter more detailed studies outline a pattern
of decreasing growth rates from Grande Ronde time to the present (Reidel
et al. 1983b; Reidel 1984).

Using the approach described by Reidel (1984), it is possible to
calculate vertical growth rates for portions of the Horse Heaven Hills
uplift relative to the lower Yakima Valley syncline and the Piening
syncline. Basically, the cumulative relief that has developed across a fold
(calculated using data from section 4.0; see tables D-1 through D-4) can be
plotted against absolute age dates of individual Columbia River Basalt Group
members (see table D-5) which give a rate of combined vertical uplift and
subsidence for Wanapum and Saddle Mountains time. Because of the hiatus
between the deposition of the Ellensburg Formation sediments and the
Pleistocene sediments, there are no stratigraphic units for this period to
gage growth rates; therefore, growth rates have to be extrapolated to the
present time. In addition, no reference line is confidently delineated from
which subsidence and uplift can be differentiated. Several assumptions are
necessary when using thickness data and age dates when calculating the
growth rates. These assumptions are reviewed in appendix D.

Results of the growth rate calculations are shown in figures 44
through 47. In all four traverses, the rate of development of the relief is
<70 m/m.y. Additionally, all four curves indicate a decrease in the growth
rate with decrease in age during the Wanapum and Saddle Mountains time.
Extrapolation of the growth rates to the present approximates the cumulative
relief developed since at least Wanapum time suggesting a uniform growth
rate of the folds since Columbia River Basalt Group time to present.
However, it is emphasized that at present there is no concrete evidence in
the study area to indicate whether this growth occurred at higher or lower
rates than the shown extrapolated rates. The three curves that represent
development between the Horse Heaven Hills uplift and the lower Yakima
Valley syncline all have approximately the same growth rates, with a
slightly higher rate determined for the Kiona anticline-lower Yakima Valley
syncline traverse. It is indicated from figure 47 that relief developed at
a lower rate between the Prosser anticline and the Piening syncline.
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Figure 44. Curve Showing Rate of Relief Development between the
Prosser Anticline and the Lower Yakima Valley Syncline during a
Portion of Columbia River Basalt Group Time and Extrapolation to
the Present. Age dates used in constructing the curves are subject
to error ranges that could alter the shape of the curve locally,
but not the general trend.
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Figure 45. Curve Showing the Rate of Relief Development betweeq
the Chandler Anticline and the Lower Yakima Valley Syncline during
a Portion of Columbia River Basalt Group Time and Extrapolation to
the Present. Age dates used in constructing the curves are subject
to error ranges that could alter the shape of the curve locally,
but not the general trend.
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Figure 46. Curve Showing the Rate of Relief Development between the

Kiona Anticline and the Lower Yakima Valley Syncline during a Portion
of Columbia River Basalt Group Time and Extrapolation to the Present.
Age dates used in constructing the curves are subject to error ranges
that could alter the shape of the curve locally, but not the general

trend.
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Figure 47. Curve Showing Rate of Relief Development between the

Prosser Anticline and the Piening Syncline during a Portion of
Columbia River Basalt Group Time and Extrapolation to the Present.
Age dates used in constructing the curves are subject to error
ranges that could alter the shape of the curve locally, but not

the general trend.
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6.0 CONSTRAINTS ON TECTONIC MODELS FOR THE DEVELOPMENT OF
THE HORSE HEAVEN HILLS UPLIFT

Many tectonic models published to date address the genesis of the
various east-west-trending and northwest-trending folds of the Yakima Fold
Belt (see appendix F, table F-3). These models also imply directly or
indirectly an origin for the Horse Heaven Hills uplift. Choosing one of
these tectonic models (or a new one) for the Horse Heaven Hills uplift is
beyond the scope of this study; however these tectonic models or future
tectonic models can be constrained by the findings of this study. This
section contains a brief evaluation of these tectonic models as they apply
to the Horse Heaven Hills uplift, followed by some suggested constraints.
More detailed reviews of such tectonic models are also presented in Davis
(1981), Price (1982), and Duncan (1983).

It is generally agreed that the Yakima folds developed under
approximately north-south compression based on the orientations of surficial
structures (e.g., folds, dikes), and that these folds are presently
deforming under north-south compression (Campbell and Bentley 1981; Rohay
and Davis 1983). However, the origin of the folding has been debated (see
table F-3). Published tectonic models for the Yakima folds can be fit into
the following several categories (see fig. 48): (1) differential horizontal
displacement of a coupled Columbia River Basalt Group layer and sub-basalt
layer (includes wrench models), (2) horizontal contraction within a detached
Columbia River Basalt Group layer (includes decollement models),

(3) horizontal contraction involving coupled Columbia River Basalt Group and
sub-basalt layers and, (4) differential vertical displacement (includes
drape fold models).

An interpretation of recently collected magnetotelluric data suggests
that the sub-basalt rock is composed of an upper sediment sequence and a
lower crystalline rock layer (Mitchell and Bergstrom 1983). The rheological
differences between these two sub-basalt layers may cause a different
accommodation to stress; however, for the purposes of this discussion these
two layers are considered as a homogeneous sub-basalt medium or basement.

6.1 EAST-WEST-TRENDING FOLDS

Formation of the Horse Heaven Hills uplift from horizontal contraction
within a detached basalt layer (thin-skinned folds) is suggested by the
uplift's long, linear trend, thrusting along its flanks, and the uplift's
lack of structural deviation over a strong regional gravity gradient aligned
with the 120° west longitude meridian (Konicek 1975, Finn et al. 1984) and
thought by Konicek to represent an eastward increase in thickness of basalt.
In addition, along a north-south transect the fold pattern of east-west-
trending Yakima folds as a whole might suggest the presence of thin-skinned
tectonics. East-west-trending Yakima folds are thought to form over local
detachments or ramps from regional detachments (Davis 1981 and Price 1982;
see table F-1),
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Data are also available that suggest coupling between the basalt and
sub-basalt rock. Along the Rattlesnake Hills, the 3.2-km-deep RSH-1 well is
interpreted by Reidel et al. (1982) not to encounter a fault consistent with
decollement and supports the presence of a high-angle fault at depth. In
addition, a thrust fault along the Columbia Hills (Swanson et al. 1979a) is
observed to steepen with depth similar to that interpreted for the
Rattlesnake Hills area. Also, magnetotelluric data in the Pasco Basin area
indicate high relief at the base of the basalt which is interpreted to
indicate a lack of decollement at the base of the basalt (Mitchell and
Bergstrom 1983). Moreover, seismicity suggests that the basement and the
basalt react as though coupled (Duncan 1983).

Differential horizontal displacement (left-lateral wrenching) involving
a coupled Columbia River Basalt Group layer and sub-basalt layer along the
northeast trend of the Horse Heaven Hills uplift (as proposed for other
east-west folds, Bentley and Farooqui 1979; Bentley et al. 1980b) is
suggested by the presence of left-stepping en echelon anticlines (e.g.,
Gibbon anticline and Chandler anticline). The importance of this en echelon
relationship (in the absence of more concrete data) as a surficial indicator
for wrenching is questionable when one observes that other east-west folds
(e.g., the Simcoe Mountains, Alder Ridge, and Paterson Ridge) contain
en echelon folds oriented in a right-stepping sense. In addition, clockwise
rotation is found from paleomagnetic vectors along the northeast trend of
the Horse Heaven Hills uplift (see appendix E), the east-west-trending
Saddle Mountains, the Gable Mountain trend, and the northwest-trending folds
of the ARW and RAW (Reidel et al. 1984).

Reidel et al. (1984) use this consistent clockwise rotation along both
east-west- and northwest-trending folds to dismiss models that call for
sinistral faulting (sinistral faulting would suggest counterclockwise
rotations). Also, seismicity along east-west folds and at trending folds
indicates, that presently, reverse or thrust faults lie along these folds
(Rohay and Davis 1983).

The asymmetric and near-monoclinal fold geometry, along with the
presence of thrust and reverse faults along the folds of the northeast trend
of the Horse Heaven Hills uplift (see section 2.0) resembles folds
originating from horizontal contraction and/or vertical displacement along
faults in the basement (e.g., Rattlesnake Mountain, Wyoming, (Brown 1984)).
This type of folding and faulting is consistent with seismic data (Rohay and
Davis 1983) and what is known of the angle of faulting as constrained by
RSH-1 and the thrust fault along the Columbia Hills, mentioned previously.
Overturned 1imbs, the possible migration of ridge crests with time (see
section 4.0), and the hypothesized north-south oriented compression during
the Miocene and Pliocene indicate that uplift may not be caused strictly by
vertical displacement.

6.2 NORTHWEST-TRENDING FOLDS
It is proposed here, that based on their proximity, parallel nature,

similar lengths, similar structural forms, and timing of development, the
structures along the ARW (including the northwest trend of the Horse Heaven
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Hills uplift) and portions of the RAW are genetically related, and thus,
tectonic models concerned with the origin of the RAW (as well as structures
coincident with the OWL) are applicable to the northwest trend of the Horse
Heaven Hills uplift.

The development of the aligned and en echelon brachyanticlines along
the RAW is attributed to dextral wrenching (differential horizontal
displacement involving both sub-basalt and Columbia River Basalt Group
layers) based on their similarities to other wrench-produced folds (see
Davis 1981). There is a similar alignment along the ARW (see fig. 12);
however, a "sense of step" for the en echelon folds is not clearly
indicated. Paleomagnetic data, which indicate clockwise rotation has
occurred along folds of both the ARW and RAW, can be explained by dextral
shear along these two structural trends (Reidel et al. 1984). In addition,
the Wallula Gap fault which lies along the RAW is suggested to be a dextral
fault, although Gardner et al. (1981) indicate that the fault is
predominantly dipslip with minor strike-s1ip movement. According to Rohay
and Davis (1983) earthquake hypocenters and focal mechanisms in the vicinity
of the RAW do not support contemporary right-lateral movement along the RAW.
Thus, although several workers propose the presence of strike-slip faults
along the RAW, evidence is not demanding that this is the case.

6.3 CONSTRAINTS

Data from this study provide further constraints for the tectonic
models discussed above. Both the northwest and northeast trends of the
Horse Heaven Hills uplift were developing simultaneously and at similar
rates (at Teast in Wanapum and Saddle Mountains time) under generally north-
south compression. In addition, structural forms along both trends are very
similar (see section 3.0). Based on these observations, it is proposed that
folding along the northwest and northeast trends of the Horse Heaven Hills
uplift were formed by the same tectonic process. These data would require
reconsideration of models that attribute different tectonic conditions to
the formation of the east-west trends and the northwest trends (e.g.,
detached deformation along one trend and basement-involved deformation along
the other trend).

This hypothesis does not consider the structural implications of the
numerous northwest-trending dextral faults and folds mapped along the
southwestern portion of the Yakima fold belt (Swanson et al. 1979b). Based
on available data, there is no apparent relationship between these
northwest-trending faults and folds and the RAW and ARW. In support of this
difference, there is a change in orientation of the axis of least
compression from vertical in the central Columbia Plateau (study area) to an
east-west orientation of the axis in the western portion of the Columbia
Plateau. This suggests that present deformation at the western margin is
predominantly produced by strike-slip movement on northwest-southeast-
oriented fault planes (Rohay and Davis 1983).
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Similarities of structural forms and timing of deformation between the
Horse Heaven Hills uplift and other folds such as Umtanum Ridge (described
in detail by Price 1982), the Saddle Mountains (Reidel 1984), and the
Rattlesnake Mountain (Fecht et al. 1984) may also imply that these folds had
a similar mechanical development.

Another structural feature that must be accommodated within a tectonic
model for the Horse Heaven Hills uplift (and other Yakima folds) is the
simultaneous growth of the Hog Ranch-Naneum Ridge anticline with the Horse
Heaven Hills uplift during at least Saddle Mountains time. Other studies
infer a pre-Columbia River Basalt Group age for the Hog Ranch-Naneum Ridge
anticline to the north (see table F-2). Tabor et al. (1982) indicate that
the Hog Ranch-Naneum Ridge anticline is related to basement structure along
the northern margin of the Columbia Plateau. Campbell (1984) proposes that
the "Naneum High" (a pre-Columbia River Basalt Group high structure
coincident with the Hog Ranch-Naneum Ridge anticline) to the north of the
study area, limited the eastward extent of the Cascade volcaniclastic
sediments. The extension of the Hog Ranch-Naneum Ridge anticline in the
lower Yakima Valley may have limited the westward progression of much of the
Columbia River basalts, such as found in the northern Pasco Basin (Reidel
and Fecht 1981). The north-south gravity gradient paralleling the 120° west
Tongitude meridian is thought by Konicek (1975) to represent a progressive
west to east thickening of the basalt. The projection of the Hog Ranch-
Naneum Ridge anticline into the lower Yakima Valley roughly parallels this
gravity gradient and may be related to this increase in thickening of the
basalt.

The structural and tectonic relationships between the north-northwest-
trending Hog Ranch-Naneum Ridge anticline, and the east-west- and northwest-
trending Yakima folds remains unclear, and further work is needed to
ascertain their relationship.
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7.0 CONCLUSIONS

Basalt flows of the Grande Ronde, Wanapum, and Saddle Mountains Basalts
of the Columbia River Basalt Group were mapped along and in the immediate
vicinity of the Horse Heaven Hills uplift. Borehole data provided
additional information away from principal exposures. The Grande Ronde
Basalt consists of flows of the Sentinel Bluffs sequence; the Wanapum Basalt
consists of flows of the Frenchman Springs, Roza, and the Priest Rapids
Members; the Saddle Mountains Basalt consists of flows of the Umatilla,
Esquatzel, Pomona, Elephant Mountain, and Ice Harbor Members. Several
sedimentary interbeds of the Ellensburg Formation are intercalated with
these flows in the study area. Additional sedimentary units of the
Ellensburg Formation, such as the Snipes Mountain conglomerate, McBee
conglomerate, or undifferentiated Ellensburg sediments occur above the
Columbia River Basalt Group. A depositional hiatus occurs within the study
area between the late Miocene and Pleistocene epochs.

Within the study area, the Horse Heaven Hills uplift consists of two
distinct intersecting trends, a northwest (N50°-55°W) and a northeast
(N60°-70°E) structural trend. The northwest-trending portion forms a part
of the Anderson Ranch-Wallula structural alignment that parallels the
Rattlesnake-Wallula structural alignment (part of the Olympic Wallowa
Lineament). Each trend consists of aligned or en echelon anticlines and
monoclines. At the intersection of the northwest and northeast trends, two
major anticlines, the Chandler anticline (part of the northeast trend) and
the Kiona anticline (part of the northwest trend) merge. As the northwest-
trending Kiona anticline is traced into the intersection, the trace of its
axis gradually changes to a more westerly direction and is accompanied by
tear faults in the northern flank of the anticline. This portion of the
Kiona anticline could represent (1) the northwest-plunging nose of the
anticline, or (2) a change in trend of the anticline as a result of local
differential stresses caused by the interference of folding along the
northwest and northeast trends.

Along the crest of the Horse Heaven Hills uplift, a series of
asymmetric (north vergence) eroded, usually double-hinged anticlines or
monoclines are present. Some of these anticlines or monoclines are
paralleled to the immediate north by a lower-relief anticline or monocline.
A1l folds either are, or approach, monoclines in geometry. Also, along
certain folds there is a transition between the monoclinal and the
anticlinal geometries.

Surface faults along the uplift generally represent strain caused by
folding. Reverse faults parallel the folds and are commonly found or
inferred along the base of the northern limb of anticlines or monoclines, in
the hinge zone of monoclines, and in the northern hinge zone of the double-
hinged anticlines. Reverse faults are rarely observed along the southern
hinge or the interhinge 1imb of a double-hinged anticline. Tear faults are
coincident with marked changes in fold wavelength and/or changes in strikes
of fold axes. Layer-parallel faults are common in steeply dipping strata
along stratigraphic contacts or zones of preferred weakness in the
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intraflow structures, but are also locally found along stratigraphic
contacts of Tow dip. Observations indicate that much of the landsliding
along northern fronts of the folds was precipitated or facilitated by the
presence of fault-shattered basalt and interbeds situated along steeply
dipping Timbs.

The geometry is strikingly similar between the northwest and northeast
trends of the Horse Heaven Hills uplift. In addition, the magnitude of
relief between the major folds (those that compose the ridge crest of the

uplift) of the two trends and between the minor folds of the two trends is
similar.

Uplift along the Horse Heaven Hills during portions of the middle and
late Miocene was concentrated on the major folds that are now present.
Growth occurred simultaneously along folds of both the northwest and
northeast trends. Local structural lows occurred between certain major
folds of each trend and also between the northwest and northeast trends
themselves. Other structures such as the lower Yakima Valley syncline, the
Piening syncline, and the Hog Ranch-Naneum Ridge anticline were also
developing simultaneously with the Horse Heaven Hills uplift. Because of a
lack of a depositional geologic record between the late Miocene and the
Pleistocene, it is not possible to determine the details of the growth of
these structures during that time. However, it is apparent that the Horse
Heaven Hills uplift continued to grow to its present-day relief either
uniformly or intermittently. Also, the lower Yakima Valley syncline appears
to have structurally "risen" in relation to the Pasco and Toppenish Basins
after the Miocene. The uplift of the Hog Ranch-Naneum Ridge anticline
within the study area may have slowed after Elephant Mountain time and is
related to the relative rise of the lower Yakima Valley syncline.

Combined uplift and subsidence rates between the Horse Heaven Hills
uplift and the lower Yakima Valley syncline for Wanapum and Saddle Mountains
time are <70 m/m.y. and between the Horse Heaven Hills uplift and the
Piening syncline are <40 m/m.y. Growth rates appear to decrease during
Wanapum to Saddle Mountains time. Extrapolation of growth rates to the
present approximates the cumulative relief developed since at least Wanapum
time and supports the possibility that the folds developed at a uniform or
nearly uniform rate from Columbia River Basalt Group time to the present.

However, this does not preclude intermittent growth (thus higher or lower
rates of growth).

An evaluation of the diverse group of published tectonic models
proposed for the Yakima folds indicates that choosing a tectonic model for
the Horse Heaven Hills uplift is not possible with the available data.
However, constraints can be placed on such models from data gathered in this
study. These models must consider (1) the monoclinal or near-monoclinal
fold geometry and associated reverse faults, (2) the development of the
folds along both trends of the Horse Heaven Hills uplift occurring simultan-
eously and at similar rates (at least during Wanapum and Saddle Mountains
time), (3) the folds along the northwest trend of the Horse Heaven Hills
uplift are genetically related and formed simultaneously with at least
portions of the RAW, (4) the uplift was developing simultaneously with the
north-northwest-trending Hog Ranch-Naneum Ridge anticline as well as other
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Yakima folds, and (5) the preliminary results indicate that clockwise
rotation is found at sites along folds of both the northwest and northeast
trends of the Horse Heaven Hills uplift. From these constraints it is
proposed that the northeast and northwest trends of the Horse Heaven Hills
uplift were generated by the same tectonic process.

Further work of this type, elsewhere in the Yakima fold belt, will help
determine if these constraints are applicable to other Yakima folds.
Present studies suggest they are. Future subsurface data, as it becomes
available, in coordination with this type of work will further constrain
tectonic models for the Columbia Plateau.
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APPENDIX A
CHEMICAL ANALYSES

Chemical analyses of Columbia River Basalt Group samples are shown in
table A-1. Most of the analyses are for major oxide concentrations and are
determined by the x-ray fluorescence method, completed at Washington State
University under the direction of Dr. Peter Hooper under contract to
Rockwell Hanford Operations. Concentrations of the trace element chromium
are taken from Beeson et al. (1985).*

*Beeson, M. H., K. R. Fecht, S. P. Reidel, and T. L. Tolan, 1985,
Stratigraphy of the Frenchman Springs Member of the Wanapum Basalt of the
Columbia River Basalt Group, RHO-BW-SA-440, Rockwell Hanford Operations,
Richland, Washington.
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APPENDIX B
BOREHOLE LOGS

BOREHOLE GEOPHYSICAL LOGS

Methods for identifying Columbia River Basalt Group flows and
Ellensburg Formation interbeds from borehole geophysical logs (fig. B-1
through B-31) in this study are based on a series of reports, theses, and
articles prepared by the faculty, staff, and students of Washington State
University, College of Engineering (Crosby and Anderson 1971; Crosby et al.
1972; Anderson et al. 1973; Siems et al. 1973; Lobdell and Brown 19773
Brown 1978; Strait 1978; Sylvester 1978; Biggane 1982). Their work was
concerned with characterizing the geohydrologic regime beneath portions of
the Columbia Plateau.

The majority of borehole geophysical logs were gathered from the
Washington State University College of Engineering. Some logs were also
from the Washington State Department of Ecology, Rockwell Hanford Operations
(Rockwell), and the U.S. Geological Survey in Tacoma, Washington
(table B-1). In addition, Rockwell conducted borehole geophysical logging
of the Chandler well (fig. B-21).

Generally, the most useful logs in this study are the radiation logs
(gamma-gamma, neutron-gamma, neutron-epithermal, neutron, and natural gamma)
which are used to pinpoint stratigraphic contacts and identify basalt flows.
Caliper and electric logs are also contained in certain suites of logs, but
are not included in the appendix. If prior stratigraphic interpretations of
pertinent logs had been done by other workers, they were reevaluated by the
author.

The gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs
measure radioactive emissions reflected off the wall rock from a downhole
probe source. These logs reflect the density (gamma-gamma) and porosity
(moisture content; neutron-gamma, neutron-epithermal neutron) of the wall
rock. In this study, the logs are used for locating stratigraphic contacts.

The natural gamma log is a recording of the natural radioactive
(primarily 40Kk) emission of the rock in the borehole. Since this emission
is directly related to the concentration of total potassium in the wall
rock, the natural gamma log can be used to identify individual basalt flows.
Major variations in K20 between individual basalt members (e.g., Umatilla
and Pomona Members) are reflected in the natural gamma log (see text
fig. 5). Sedimentary interbeds of the Ellensburg Formation often, but not
always, contain potassium-rich clays which provide a high gamma "kick" in
the natural gamma log.

Drillers' logs are available for many of the geophysically logged
boreholes; geologists' logs are rare (e.g., Paterson Test Well, Pearson
1973). Both were consulted during interpretations of the borehole
geophysical logs.

B-1



the Moon #1 well and were cursorily inspected to ascertain their identities.
Cuttings from several intervals were then analyzed for their major oxide
concentrations to confirm identities. X-ray fluorescence analyses of basalt
were also available for the Horse Heaven Test well. Basalt samples
extracted from boreholes DC-15 and DDH-3, located in the Pasco Basin, have
been chemically analyzed in detail to confirm basalt flow identities and
serve as reference boreholes for correlating geophysical Tlogs.

Although the Wanapum Basalt was frequently penetrated by boreholes,
certain chemical and physical factors thwarted confident identification of
the Wanapum basalt flows. These factors were (1) immeasurable differences
in K20 content between the Priest Rapids, Roza, and Frenchman Springs
Members; (2) multiple vesicular zones within an individual basalt flow;
(3) variations in the total number of flows within a member; (4) the
discontinuous nature of the interbedded sediments; and (5) the non-uniform
thickness of the basalt flows and sedimentary interbeds. However, this
problem was overcome in two boreholes (Grandview City and Prosser Experiment
Station) by correlating the borehole geophysical logs with those of
boreholes DDH-3 and DC-15.

DRILLERS' LOGS

Drillers' logs provided additional control for constructing isopach
maps. Although drillers' logs are one of the least reliable tools for
identifying stratigraphic units, they can, with caution, be most effective.
Over 90 drillers' logs were used for this study. Logs were obtained from
both the Washington State Department of Ecology and from Rockwell Hanford
Operations.

RHO-BW-SA-344 P
Drill cuttings of the Columbia River Basalt Group were collected from

Ellensburg Formation sediments using drillers' logs is dependent primarily
upon a driller's ability to differentiate sedimentary interbeds from the
basalt flows, and secondarily, on that person's ability to recognize varia-
tions in the physical properties of the sediments or basalt (e.g., vesicular
flow top). The driller is able to do this by noting differences in the
drilling rate and in drill cuttings. Identification of the stratigraphic
units takes into account the local stratigraphy determined from field
mapping from this and other studies and borehole geophysical logs. In
addition, it is necessary to become acquainted with the diverse terminology
used for describing drill cuttings. During an evaluation of these drillers'
logs, many logs were discarded because of lack of credibility.

Successful identification of Columbia River Basalt Group flows or

Interpretations were complicated by (1) inconsistencies in the quality
and style of reporting found in the drillers' logs, (2) proximity of well
sites to complex or unknown structures, (3) lack of stratigraphic control
nearby, (4) the discontinuous nature of sedimentary interbeds (e.g., Selah
interbed), and (5) localized flows (e.g., Esquatzel Member). As is the case
with the borehole geophysical logs, drillers' logs are commonly inadequate
in delineating Wanapum Basalt flows and intercalated sedimentary interbeds.
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Ti=ICE HARBOR MEMBER
Telv=LEVY INTERBED
Tem = ELEPHANT MOUNTAIN MEMBER
Ter = RATTLESNAKE RIDGE INTERBED
Tp=POMONA MEMBER
Tes = SELAH INTERBED
Te = ESQUATZEL MEMBER
Tecc = COLD CREEK INTERBED
Tu = UMATILLA MEMBER
Tema = MABTON INTERBED

LEGEND

Tpr = PRIEST RAPIDS MEMBER
Teq = QUINCY INTERBED
Tr= ROZA MEMBER
Tsc = SQUAW CREEK INTERBED
Tf = FRENCHMAN SPRINGS MEMBER

Tgr = UNDIFFERENTIATED
GRANDE RONDE BASALT

__ Y/ __ =WATER TABLE

® = SAMPLED FOR
CHEMICAL ANALYSIS

PS8509-197

Figure B-1. Legend for Borehole Geophysical Logs.
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Figure B-2. Borehole Geophysical Logs of the Sharpe Well. (See
fig. B-1 for legend.)
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Figure B-3. Borehole Geophysical Logs of the Chesley Well. (See
fig. B-1 for legend.)
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Figure B-4.
(See fig. B-1

Borehole Geophysical Logs of the Horrigan Farms Well.
for legend.)
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Figure B-5. Borehole Geophysical Logs of the Palmer 2 Well.
(See fig. B-1 for legend.)
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Figure B-6. Borehole Geophysical Logs of the Palmer Well. (See
fig. B-1 for legend.)
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Figure B-7. Borehole Geophysical Logs of the Barber 2 Well.
(See fig. B-1 for legend.)
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Figure B-8. Borehole Geophysical Logs of the Paterson Test Well.
(See fig. B-1 for legend.)
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Figure B-9. Borehole Geophysical Logs of the Moon Well. (See

. fig. B-1 for legend.)
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Figure B-10.
fig. B-1 for legend.)

Borehole Geophysical Logs of the Moon 1 Well. (See
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Figure B-11. Borehole Geophysical Logs of the Horse Heaven Test Well.
(See fig. B-1 for legend.)
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Figure B-12. Borehole Geophysical Logs of the Flower Well. (See
fig. B-1 for legend.)
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Figure B-13. Borehole Geophysical Logs of the Prosser Municipal Well.
(See fig. B-1 for legend.)
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Figure B-14. Borehole Geophysical Logs of the Long Well. (See
fig. B-1 for legend.)
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Figure B-15. Gorehole Geophysical Logs of the Smith Well. (See
fig. B-1 for legend.)
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Figure B-16. Borehole Geophysical Log of the Miller Well. (See
fig. B-1 for legend.)
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Figure B-17. Borehole Geophysical Logs of the Clodfelter Well.

fig. B-1 for legend.)
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Figure B-18. Borehole Geophysical Logs of the Grandview City Well.
(See fig. B-1 for legend).
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Figure B-19. Borehole Geophysical Logs of the Prosser Experiment
Station Well. (See fig. B-1 for legend.)
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Figure B-20. Borehole Geophysical Logs of the Goroch Well. (See

fig. B-1 for legend.)
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Figure B-21. Borehole Geophysical Logs of the Chandler Well. (See

fig. B-1 for legend.)
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Figure B-22. Borehole Geophysical Logs of the 79-07 Well. (See
fig. B-1 for legend)
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Figure B-23. Borehole Geophysical Log of the Bauder Well. (See

fig. B-1 for Tlegend.)
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Figure B-24. Borehole Geophysical Logs of the Yakima Valley College



RHO-BW-SA-344 P

NEUTRON-EPITHERMAL NATURAL
NEUTRON LOG GAMMA LOG
0
j _.{; p
Tem
100~ Ter
g Tp
E
E
Tu
g 200
Tema
WANAPUM
300 BASALT
—2,300 3,300 12 100

counts/s counts/s

Figure B-25. Borehole Geophysical Logs
fig. B-1 for legend.)
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of the Stout Well.

PS8509-221

(See
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Figure B-26. Borehole Geophysical Logs of the Evans Well. (See
fig. B-1 for legend.)
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fig. B-1 for legend.)

Borehole Geophysical Logs of the White Well.
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Figure B-28. Borehole Geophysical Log of the Aarons Well. (See
fig. B-1 for legend.)
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Figure B-29. Borehole Geophysical Log of the

fig. B-1 for legend.)

Nakamura Well. (See
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Figure B-30. Borehole Geophysical Logs of the J & R Orchards Well.

(See fig. B-1 for legend.)
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Figure B-31. Borehole Geophysical Logs of the Shaw Well. (See

fig. B-1 for legend.)
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Table B-1. Borehole Geophysical Logs Used In Study.

Location ngg:r:_(';?)'e Well designation Log source P’f,‘,’{e‘,t,;f;'t%'.?f: v
T.7N,R.22E. sec.23B 990.0 Sharpe Wsu a
T.7 N.,R. 23 E., sec. 36R 2454 Chesley wsu a
T.7N.,R.24E., sec. 08D 3295 Horrigan Farms wsu
T.7N. R.25E., sec. 23F 380.7 Palmer #2 Wwsu
T.7N.,R.25E., sec. 35M 307.2 Palmer wsu
T.7N.,R.25E., sec. 36F 264.3 Barber #2 WSU
T.7N.,R.25E., sec. 36N 256.0 Paterson Test Well wsu b
T.7N.,R.26E., sec. 058 327.7 Moon wsuU-

T.7N. R.26 E., sec. 30R 159.4 Moon #1 wsu
T.7N.,R.27E, sec. 36A 368.5 Horse Heaven Test Well wsu e
T.8N,R.22E,sec. 11) 161.5 Flower wsu d
T.8N.,R.24E., sec.01) 381.0 Prosser Municipal Well WwWsu C
T.8N.,R.24E., sec. 10N 188.1 Long USGS
T.8N.R.27N,, sec.29Q 2210 Smith wsu
T.8N.,R.28 E., sec. 28N 508.4 Miller wsu
T.BN.,R.2BE., sec.34C 197.2 Clodfelter wsu b
T.9N.,R.23E., sec. 22) 429.5 Grandview City wsu
T.9N.,R.25E., sec.06B 366.4 Prosser Experiment Station WSsu
T.9N.,R.25E., sec.07) 206.7 Goroch wsu
T.9N.R.26E.,sec.20A 209.4 Bauder (Chandler) Rockwell
T.9N.,R.27E., sec. 25M 3222 79-07 Rackwell
T.9N,R.28E., sec. 34H 271.0 Bauder Rockwell
T.10N.,R. 23 E., sec. 04L 150.3 Yakima Valley College Rockwell
T.10N. R.23E.,sec. 17B 359.7 Stout Rockwell ¢
T.10N.,R.23 E, sec. 36A 4011 Evans Rockwell 4
T.10N.R.23E., sec. 36G 2835 White Rockwell
T.10N.,R. 24 E., sec. 24F 140.2 Aarons UsGs
T.10N_R.25E., sec. 25E 184.1 Nakamura USGS
T.10N.,R.25E., sec. 33N 275.5 J &R Orchards wsu
T.10N.,R.26 E., sec. 27Q 236.2 Shaw Wsu <
T.10N.,R.2BE., sec. 14F 1,079.0 DDH-3 Rockwell f
T.11N.,R.28E., sec. 35F 1,293.2 DC-15 Rockwell f
NOTE: WSU = Washington State University
USGS = U.S. Geological Society
Rockwell = Rockwell Hanford Operations.
a. Brown1978. d.  Washington State University, (Albrook Laboratory).
b. Crosbyetal,.1972. e.  Washington State Department of Ecology.
¢. Lobdell and Brown 1977. f. Landon 1985.
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APPENDIX C
DESCRIPTIVE GEOLOGIC CROSS SECTIONS
The cross sections shown in this appendix (fig. C-1 through C-6) depict
as clearly as possible the structure that can be observed in the field.

These data were used to construct the cross sections interpreted within the
Structure section (section 3.0 of basic text).
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Figure C-1. Descriptive Geologic Cross Sections through the Horse

Heaven Hills

Uplift within the Byron Segment (see fig. 15 for location

and fig. 17 for legend).
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Figure C-2. Descriptive Geologic Cross Sections through the Horse Heaven
Hills Uplift within the Gibbon Segment (see fig. 15 location and fig. 17
for legend).
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Figure C-3. Descriptive Geologic Cross Section through the Horse
Heaven Hills Uplift within the Chandler Segment (see fig. 15 for
location and fig. 17 for legend).
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Figure C-4. Descriptive Geologic Cross Sections through the Horse
Heaven Hills Uplift within the Webber Segment (see fig. 15 for
location and fig. 17 for legend).
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Figure C-5. Descriptive Geologic Cross Sections through the Horse
Heaven Hills Uplift within the Kiona Segment (see fig. 15 for
location and fig.17 for legend).

SOUTH NORTH

| CHANDLER

ANTICLINE KIONA ANTICLINE

[+ 1]
o
i

i Tem Ter j ‘l

Tp PROJECTED TOP
/OF SELAH INTERBED
i

I\

§

~

200+ LIMIT OF EXPOSURE

ELEVATION ABOVE
MEAN SEA LEVEL (m)
1

55)0 METERS

PS8509-195

Figure C-6. Descriptive Geologic Cross Section through the Horse
Heaven Hills Uplift within the Junction Segment (see fig. 15 for
Tocation and fig. 17 for legend).

C-6




RHO-BW-SA-344 P

APPENDIX D
ASSUMPTIONS USED IN CALCULATING GROWTH RATES

SECTION THICKNESSES

According to Reidel (1984), the following assumptions must be made when
using thicknesses of basalt flows to calculate rates of growth: _
(1) Columbia River Basalt Group flows had low viscosities (Waters 1961, Shaw
and Swanson 1970) and their flow tops are an indicator of paleohorizontality
(Shaw and Swanson 1970); (2) the thickness variations in the Columbia River
Basalt Group flows record existing topography and structure and do not
represent normal variations in the flow or erosion. It has been
demonstrated by Reidel (1984) for the Pasco Basin, that such normal
variations in individual Columbia River Basalt Group members have a one
standard deviation of ~4 m or less for certain members of the Saddle
Mountains or Wanapum Basalt; (3) folding or faulting has not altered the
original flow thickness since the time of emplacement, that is, structural
thickening can be recognized. Section thicknesses used in the calculations
are shown in tables D-1 through D-4,

Section thicknesses of Columbia River Basalt Group flows and Ellensburg
sedimentary interbeds were measured in the field, from borehole geophysical
logs, and from drillers' logs. In all cases, measurements were made after
delineating the stratigraphy and structure.
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Field measurements of basalt flows and sedimentary interbeds were
gathered using a surveying tape, a Paulin altimeter, or, in some cases, a
Brunton compass. Measurements were made where both the upper and lower
contacts could be delineated. The presence or absence of erosion in the
basalt was determined by the observation of primary physical features (e.g.,
vesicular flow top). Where the exact location of the stratigraphic contact
could not be pinpointed, it was sometimes possible to measure a maximum or
minimum thickness. Measurements were corrected for structural tilt where
necessary. Caution was exercised in determining whether section thicknesses
were "increased" by invasive flows.

Thickness data interpreted from borehole geophysical logs are deemed
gquite accurate as stratigraphic contacts are easily pinpointed.

RADIOMETRIC AGE DATES

Two methods of radiometric age dating were used to determine absolute
ages for Columbia River Basalt Group flows: potassium-argon and
argon-argon. Argon loss in the older Columbia River Basalt Group flows
gives abnormally young potassium-argon age estimates (Long and Duncan 1982).
Argon-argon dating techniques achieve better age dates for these older
Columbia River Basalt Group flows (Long and Duncan 1982). The two dating
techniques give similar age dates for the younger basalts, but different
ages for the older basalts. In this study, age dates from the argon-argon
technique were used for the Grande Ronde Basalt.

Table D-5 shows the age dates used in the construction of the growth

curves. Age dates from certain flows must be estimated since there are no
available radiometric age dates.
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Table D-5.

RHO-BW-SA-344 P

Age Dates Used in Calculating Development Rates
of the Horse Heaven Hills Uplift.

CRBGE@ member or

stratigraphic (8% p ) petnog Source
; Ice Harbor 8.5 K-Ar McKee et al. (1977)
Elephant Mountain 10.5 K-Ar McKee et al. (1977)
} Pomona 12.0 K-Ar McKee et al. (1977)
| Umatilla 14.0 b
i Priest Rapids 14.5 K-Ar Watkins and Baksi
1 (1974)
‘ 14.8 c
1541 ¢
Wanapum/Grande 15.6+0.2 40pr-39ar Long and Duncan (1982)

Ronde Contact

NOTE: Error range given for the dates of Long and Duncan (1982).

dCRBG - Columbia River Basalt Group.

bAge calculated by averaging eruption times of flows between the
Pomona and Priest Rapids Members.

CAge calculated by averaging eruption times of flows between the
Priest Rapids Member and the Wanapum/Grande Ronde Basalt contract.

Roza
Frenchman Springs
|
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APPENDIX E
PRELIMINARY RESULTS OF PALEOMAGNETIC VECTOR ROTATION

A recent study (Reidel et al. 1984) in the Pasco Basin area evaluates
vector rotation from the Pomona Member along Yakima folds. One of the
findings of the study is that clockwise rotation occurred at sites along
both east-west-trending folds and northwest-trending folds. This finding
has important tectonic significance. It is the purpose of this section to
compile available paleomagnetic results for the Pomona Member at sites
located along folds of both trends of the Horse Heaven Hills to see if a
similar clockwise rotation occurred.

A reference Pomona direction reported by Reidel et al. (1984),
(inclination = -52.2°, declination = 189.7°, a95 = 1.6°) is used as the
stable magnetic vector direction to calculate mean rotational values
(table E-1, fig., E-1). A1l but one of the sites record a clockwise
rotation. Although the declination uncertainty for some of these sites is
great, clockwise rotation along both trends of the Horse Heaven Hills uplift

(including other folds of the Anderson Ranch-Wallula Structural alignment)
is preliminarily indicated.
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APPENDIX F
TECTONIC MODELS
A summary of published tectonic models that deal with the timing of

growthz rate of growth, and origin of Yakima folds is presented in the
following pages in table form (tables F-1 through F-3).
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Table F-1. Summary of Models for the Timing of
Development of Yakima Folds. (sheet 1 of 6)

Anderson (1980) Simcoe-Horse Heaven Hills. Deformation and
associated faulting occurred during Vantage horizon time.

Barrash et al. (1983)

Yakima Folds. Mild, episodic anticlinal folding localized in the
Yakima Ridges area (17-10 + 2 m.y.B.P.). Present structural relief is
dominantly postbasalt (10 + 2 - 4 m.y.B.P.). Minor folding since

4 m.y.B.P., with simultaneous deformation of east-west folds and Cle
Elum-Wallula Lineament structures.

Horse Heaven Hills Uplift. The Horse Heaven Hills uplift was developed
after 10.5 m.y.B.P. The eastern segment (northwest trend) was
developed after 8.5 m.y.B.P.

Bentley (1977)

Yakima Folds. Local substantial deformation occurred between 14 and
12 m.y.B.P., but the majority of the folds developed between 6 and
1.5 m.y.B.P.

Bentley (1980b)

Cle Elum-Wallula Lineament. Pre-Umatilla regional deformation occurred
north of Yakima Ridge in the Cle Elum-Wallula Lineament.

Umtanum uplift. Two phases of deformation took place: post-Wanapum
and post-Saddle Mountains time. Minor folding occurred in postbasalt
time.

Bentley et al. (1980b)

Columbia Hills. Thrusting along the fold occurred during Grande Ronde
time and, subsequently, before 10 m.y.B.P.

Biggane (1982)

Hog Ranch Fault Axis. Thinning and pinching occurred out of the Pomona
Member towards the Hog Ranch Fault Axis, which separates the Moxee and
Black Rock Valleys.

F-2
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Table F-1. Summary of Models for the Timing of
Development of Yakima Folds. (sheet 2 of 6)

Bond et al. (1978)

Pasco Basin Area. Most folds in southwestern Pasco Basin developed
since Saddle Mountains time (minor uplift indicated in Umatilla-time
Rattlesnake Mountain uplift).

Horse Heaven Hills Uplift. Possible development occurred in post-
Pomona time.

Brown (1978)

Horse Heaven Plateau. The Horse Heaven Plateau was possibly
tectonically active during late-Wanapum time.

Brown (1970)

Pasco Basin Area. Anticlinal uplift in Pasco Basin began in earliest
Pliocene time--near the close of emission of the basalts and continuous
to present. Uplift progressed roughly from north to south with the
Horse Heaven Hills rising slower and/or later than the northerly
anticlines. Variations in rate and time of rise also occurred along a
single anticline.

Campbel1 (1984)

Hog Ranch-Naneum Ridge Anticline. The "Naneum high" is a prebasalt
structure and 1ies below the 1-29 Bissa well.

Campbell and Bentley (1981)
Toppenish Ridge. Late Quaternary and Holocene faulting is found along
the crest.

Davis (1981)

Yakima Folds. Contemporaneous deformation along east-west folds and
Cle Elum-Wallula Lineament structures began about 14 m.y.B.P. and was
continuous to the present. Most deformation is post-Pomona in age.

Fecht et al. (1985)

Hog Ranch-Naneum Anticline. Uplift of the "Hog Ranch structure"
diverted the ancestral Columbia River to a more southerly course across
the emerging Rattlesnake Hills.
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Table F-1. Summary of Models for the Timing of
Development of Yakima Folds. (sheet 3 of 6)

Gardner et al. (1981)

Horse Heaven Hills. Structural uplift began prior to extrusion of the
Pomona flow.

Goff and Myers (1978)

Umtanum and Yakima Ridges. Anticlines began folding before extrusion
of the Umatilla Member.

Hog Ranch-Naneum Ridge Anticline. Southward growth of the Hog Ranch
anticline cuts off an ancient stream channel during Saddle Mountains
time.

Jones and Landon (1978)

Horse Heaven Hills. Structural uplift began prior to extrusion of the
Pomona and Elephant Mountain flows, but possibly even as early as
Priest Rapids time.

Rattlesnake-Wallula Structural Alignment. The Rattlesnake-Wallula
Structural Alignment is younger than the Horse Heaven Hills structure,
and folding probably began in post-Elephant Mountain time and continued
through Ice Harbor time.

Kienle et al. (1978)

Yakima Folds. The greatest amount of uplift on most structures took
place after Elephant Mountain time.

Kienle (1980)

Horse Heaven Hills and Columbia Hills. The Horse Heaven Hi11ls and
Columbia Hills formed largely between 3.5 and 4.5 m.y.B.P.

Landon et al. (1982)

Hog Ranch-Naneum Ridge Anticline. Hog Ranch anticline, west of the
Pasco Basin, was in existence by late Grande Ronde time.
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Table F-1. Summary of Models for the Timing of
Development of Yakima Folds. (sheet 4 of 6)

Laubscher (1981)

Yakima Folds. "The main part of the Yakima basalt deformation north of
Yakima took place between about 3-1 m.y.B.P. with some deformation
continuing into the younger Pleistocene and present. Yakima
deformation began at the south and proceeded north."

Laval (1956)
Yakima Folds. Mild local warping occurred during the accumulation of
the upper Yakima basalt formation. Intensified bedload warping and
folding culminated during the early Pleistocene.

Mackin (1961)

Yakima Folds. Uplift occurred in part of Wanapum time.

Myers et al. (1979)

Yakima Folds. "Most folding is probably of late Miocene and Pliocene
age."

Powell (1978)
Tygh Ridge. "Uplift along the Tygh Ridge structure appears to have

occurred sporadically throughout the time of the extrusion of the
Grande Ronde Basalt."

Price (1982)

Hog Ranch-Naneum Ridge Anticline. Hog Ranch was possibly present in
Grande Ronde time in the Priest Rapids area.

Reidel (1984)

Saddle Mountains Uplift. The Saddle Mountains uplift was growing
continuously from at least Grande Ronde time to at least 3.5 m.y.B.P.
and probably into present.

Hog Ranch-Naneum Ridge Anticline. Hog Ranch was present in Grande
Ronde time.
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Table F-1. Summary of Models for the Timing of
Development of Yakima Folds. (sheet 5 of 6)

Reidel et al. (1980)

Saddle Mountains Uplift and other Yakima Folds. The Saddle Mountains
uplift was forming in early Wanapum time and most of the other Yakima
folds in the Pasco Basin were active by late Wanapum/early Saddle
Mountains time.

Reidel and Fecht (1981)

Yakima Folds in the Cold Creek Syncline Area, Pasco Basin. Relief was
present by at least Wanapum time. "... any structural relief present
during Grande Ronde time would have been obscured by the large volume
of lava which was erupted over a short period of time."

Reidel et al. (1983)

Yakima Folds. Folds were growing in Grande Ronde time and were
actually growing through much of Miocene time along anticlinal axes.

Schmincke (1964)

Saddle Mountains Area. Deformation began in two synclines along the
north scarp of the Saddle Mountains at least by Priest Rapids time.
"Cross folding along north-south axes was slightly earlier than, or
contemporaneous with, the more prominent east-west warping shown by the
Saddle Mountains anticline."

Shannon and Wilson (1973)

Northwest-Southeast Trending Structures in the Arlington, Oregon Area.
These structures are interpreted to be at least pre-Roza in age.

Columbia Hills, Blue Mountains, and Horse Heaven Anticline. These
structures, as well as their related synclines, were last deformed
prior to middle Pleistocene time. The best bracket on the time of the
major deformation of the region places it between 3.5 and 4.5 m.y.B.P."

Swanson and Wright (1978)

Yakima Folds. Formed during Saddle Mountains time.

Hog Ranch-Naneum Anticline. Naneum Ridge anticline in the Wenatchee
Mountains was probably active as early as Grande Ronde time.
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Sylvester (1978)

East-West-Trending Structures. The Mosier syncline, the Horseshoe Bend
anticline, and the Swale Creek syncline were initiated in the post-
Priest Rapids time.

Northwest-Southeast-Trending Folds. The folds developed in the late
Miocene to early Pliocene (Warwick, Snipes Butte, and Goldendale
anticlines) and transect the east-west structures.

Tabor et al. (1982)

Hog Ranch-Naneum Ridge Anticline. Naneum Ridge anticline causes
thinning of Vantage Member.

Tolan et al. (1984)

Yakima Folds. VYakima folds that extend through the Cascade Range
control the course of the ancestral Columbia River as early as
Frenchman Springs time.

Waters (1955)

Yakima Folds. Folds grew intensely during early Pliocene time.

RHO-BW-SA-344 P
Table F-1. Summary of Models for the Timing of
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Table F-2. Summary of Growth Rate Models for Yakima Folds.

Barrash et al. (1983)

Uplift of the Saddle Mountains occurred at an average rate of between
| 0.1 mm/yr (assuming deformation occurred between 10.5 and 4 m.y.B.P.)
| and 0.14 mm/yr (for the period of 8.5 to 4 m.y.B.P.). "Estimated
average uplift rate for Rattlesnake Hills between 10.5 and 4 m.y.B.P.
to be 0.14 to 0.20 mm/yr."

Brown (1970)

Anticlinal ridges grew at the rate of 0.1 mm/yr.

Caggiano et al. (1980)

Basalt deformation progressed at <1 mm/yr.

Kienle et al. (1978)

Yakima folds developed at 0.75 to 1.5 mm/yr for the period between 8 or
6 m.y.B.P. to 4 m.y.B.P.

Reidel (1984)

Saddle Mountains uplift was undergoing a vertical rate of uplift of
~250 m/m.y. in late Grande Ronde time but slowed to -40 m/m.y. by
Elephant Mountain time. Extrapolation of these rates to the pre§ent
structural relief indicates a rate of -40 m/m.y. for post-Columbia
River Basalt Group time.

Reidel et al. (1980)

A minimum rate of uplift for the Saddle Mountains during wgnapum and
Saddle Mountains time is -39 m/m.y. A maximum rate of uplift for
Rattlesnake Mountain during this same time interval is ~70 m/m.y.

Reidel et al. (1983a)

Between Rattlesnake Mountain and the Cold Creek syncline, the combined
rate of uplift and subsidence was found not to exceed 150 m/m.y. over
the time interval of 14.5 to 10.5 m.y.B.P. During this same time
interval the combined uplift and subsidence of the Saddle Mountains and
Wahluke syncline decreased to ~80 m/m.y. by 10.5 m.y.
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Table F-3. Summary of Models for the Origin of Yakima Folds.
(sheet 1 of 4)

East-West Folds and Faults.

Bentley (1977)

"Brittle basalts can fold only under a combined horizontal compre§sion
and vertical movement along basement weakness zones. Each anticlinal
structure has a weakness zone in basement rocks that has localized the
horizontal stresses and caused the vertical uplift of the ridges at
successive times. In gross character, anticlines are "drape" folds
caused by vertical breakup of basement blocks."

"The "ridges" are faulted monoclinal anticlines formed as drape folds

above rotated basement blocks. The narrow ridges were uplifted as
adjacent broad synclinal basins subsided."

Bentley (1980a)

"These faulted anticlines (east-west folds) may be part of an gxtensive
decollement system that has ~1% north-south horizontal shortening
across the system."

Bentley (1982)

Yakima folds reflect drag on ramps from sub-basalt and interbasalt
decollements.

Bentley et al. (1980b)

The Columbia Hills formed over "deep-seated left lateral strike-slip
faulting (N.70° E.) localized mobile zone."

Bentley and Farooqui (1979)

"East-west Yakima folds mark the position of fundamental Reidel shears
that formed in early Miocene time by left-lateral-strike-slip zones in
later deformation, localizing most thrusting and folding, and
subsequent, minor, left lateral movement.

Brown (1970)

"Anticlinal ridges, sometimes uplifted plateaus, are in part at least
related to the vertical forces of basining. Evidence of major
compression or tension with the formation of major thrust faults or
normal faults respectively, appear absent."
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Table F-3. Summary of Models for the Origin of Yakima Folds.
(sheet 2 of 4)

East-West Folds and Faults.
Bruhn (1981)

Long gentle 1imbs indicate fault ramp-flexure model with decollement of

group of localized detachments at 3 to 5 km deep near the base of the
basalts.

Davis (1981)

East-west trending fold-fault structures formed by buckling and local
| detachment.

Laubscher (1981)

East-west folds were formed over ramps that emanate from a decollement
at the base of the crust.

Laval (1956)

"... two modes of structural genmesis are suggested: folding free of
the basement, or folding directly related to deformation gf the _
basement. The first is suggested in the similarity of_Sn1pes Mountain
and Toppenish Ridge to some of the simpler Jura Mountains fo1ds, and
the second is suggested in the similarity of Saddle Mountains and the
Horse Heaven Plateau to the Pryor Mountains of Montana. Neither type
of folding can be proved because the base of the Yakima basalt is not
exposed in the areas mapped."

Price (1982)

Major thrusts cannot underlie the Yakima anticlinal fo1ds_due to the
lack of associated strain features. Folds probably overlie local
detachments. Basalt was rotated clockwise into the fo]@s from the
southeast around the Palouse slope which acted as a rigid buttress.

Reidel et al. (1984)
East-west directed sinistral shear along the major_anticlina1.r1dggs is
not supported by paleomagnetic data. There is a direct relationship

between the amount of rotation and the amount of deformation and
position of fold.
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Table F-3. Summary of Models for the Origin of Yakima Folds.
(sheet 3 of 4)

East-West Folds and Faults.
Russel (1893)

"An example of the upturned edge of an orographic block is furnished by
the northern escarpment of the sloping table land known as Horse-
Heaven, which is well exposed in the neighborhood of Kiona and Prosser.
This Tong Tine of cliffs is a fault scarp from which the strata slope
gently southeast toward the Columbia."

"Narrow ridges were formed by an arching of the strata without
breaking. The arches were raised by a force acting from below upward,
and not by lateral pressure which forced the strata into ridges and
troughs, as is common especially in the Appalachian Mountains."

Waitt (1979)

"An hypothesis consistent with regional relations is that the
individual east-trending scarps in Kittitas Valley evince reverse
faults caused by north-south compression ..."

Northwest-Trending Folds and Faults

Barrash et al. (1983)

"The Warps and folds may reflect local responses to rapid crustal
loading over pre-existing northwest-trending structural grains.
Alternately, or in addition, northwest compression may have induced
limited dextral shear on pre-existing, northwest-trending basement
structure(s) beneath the Olympic-Wallowa Topographic Lineament and
thereby influenced the orientation of surface folds as in Reidel-type
deformation."

"We suggest that a buttressing effect at depth across steeply dipping
structures along the Rattlesnake Lineament (Bond and others, 1978;
Davis, 1981) influenced the initial deformation pattern at the surface,
and that the lateral continuity of the basalt flows allowed HHH area to
respond as a continuous unit with similar volumes of rock displaced
east and west of the symmetry plane."
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Table F-3. Summary of Models for the Origin of Yakima Folds.
(sheet 4 of 4)

East-West Folds and Faults.
Bentley (1977)

The Olympic-Wallowa Topographic Lineament is a crustal weakness zone,
old basement structures localized the later vertical movement along the
Tine. "A1l structures are formed by vertical movement and are rooted
in basement weakness zones and most structures are monoclinal faults at
the surface.

Bentley (1980a)

The Olympic-Wallowa Topographic Lineament marks a Mesozojc'Benioff zone
formed from dextral translation abutted against a more rigid zone.

Bentley (1980b)

"The geometry of the Umtanum thrust fault zone is consistent wi@h a
model of north-south (horizontal) compression with decollement in
several sedimentary interbeds within the Grande Ronde and Wanapum
Basalt."

The Olympic-Wallowa Topographic Lineament formed as result of dextra]
shear along an incompetent compressive zone, as much of the translation

Bentley and Anderson (1979)
abutted against the more rigid North American Plate.”
|

] Price (1982)

Rattlesnake Mountain and the northwest-trending portion of the Horse
Heaven Hills are associated with dextral shear.

Waitt (1979)

In the Kittitas Valley "An hypothesis consistent with regional ‘
relations is that the ... southeast trend of dextral echelon pattern 1s
due to right lateral couple across a southeast-trending structural zone
that includes, but is not limited to the topographically defined

Olympic-Wallowa Lineament ..."
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