

Building 3D PDFs to Visualize Geological Data

Daniel W. Eungard and David A. Jeschke

Digital Mapping Techniques 2015

Division of Geology and Earth Resources
David K. Norman - State Geologist

Part 1: Subsurface geometry using
Python and ArcScene – David A. Jeschke

Part 2: Building professional-quality 3D PFD files based on ArcScene export files using ReportGen – Daniel W. Eungard

Line of cross section A-A'

Cross section inset A-A'

The map reader must attempt to visualize the terrain and subsurface geology from these two elements.

Our profile (below) begins in ArcMap and is finished in Illustrator

The profile geometry poses a challenge for 3D visualization:

- The X axis on the profile view represents distance along the line of cross section: a combination of X and Y in plan-view coordinates
- The Y axis on the profile represents the Z axis in plan-view coordinates
- These coordinates must be translated into an ArcScene readable format

What can ArcScene read?

- X and Y coordinates are from feature geometry
- Z coordinates are from feature attributes
- These borings are "extruded" using elevation at the top and bottom of each layer
- Each boring is multiple polygons; each has its own top and bottom elevations, and geologic symbol

Preparing cross section data for display in ArcScene

- Depths of units vary continuously over the length of the line of cross section
- Each feature "extruded" in ArcScene must have discrete top and bottom elevations
- This presents a quandary: depth values must change and yet cannot change

cross sections

data

files

ReportGen

Modify state file

1000 500 **Building 3D** Modify VRML **Export VRML** Build model in

Our solution: chop the cross section into itty-bitty vertical slices

- We build overlapping 10 foot lines along the line of cross section
- Each overlapping line represents one geologic unit
- Each has its own top and bottom depths, and unit symbol
- Curves become "discretized" into imperceptibly small horizontal lines

cross sections

files

ReportGen

Modify state file

X and Y coordinates must be found for the start and end points of each 10 foot line segment

- X and Y coordinates are found for 1st and 2nd nodes in line of cross section
- The difference in X coordinates, and the difference in Y coordinates are determined
- The number of 10 foot line segments is determined
- The change in X and Y are divided by the number of 10 foot segments
- This represents the change in X, (ΔX) and the change in Y, (ΔY) for each 10 foot segment
- Lines are built in a feature class with X and Y coordinates for endpoints incrementing by ΔX and ΔY
- Attributes for Top Elevation, Bottom Elevation, and Geologic Unit are coded for each new line built


```
# Loop through column segments polygon features and make a new
 rows = arcpy.SearchCursor("exploded segments")
 row = rows.next()
                                                                                     All of this processing is done using an ArcGIS script tool
 newPoint = arcpy.CreateObject("Point")
 array = arcpy.CreateObject("Array")
                                                                                     This tool calls on a Python script we wrote for this
 cx3DRows = arcpy.InsertCursor(cx3D)
 x=1
                                                                                     purpose (a portion of the script is shown at left)
 while row:
     feat = row.getValue("SHAPE")
     ext = feat.extent
                                                                                                                                                      _ 🗆 ×
                                                                    Cross Section to 3D
     minx = ext.XMin - (cumulativeDistance - segmentLength
     maxx = ext.XMax - (cumulativeDistance - segmentLengt - Cross Section Polygons Feature Class
                                                                                                                    Cross Section to 3D
                                                                                                           <u>rå</u>
     topElevExag = ext.YMax
     botElevExag = ext.YMin
                                                                                                                    Constructs 3D cross section features from cross-
                                                                     Geologic Unit Field (optional)
                                                                                                            ▼
                                                                                                                    sectional polygons and a line of cross section.
      # find X Y coordinates which correspond to minx and Line of Cross Section Feature Class
                                                                                                                    Lines within the cross section that should be
                                                                                                                    included in the 3D representation must be buffered
     proportion = minx/segmentLength
                                                                                                           <u>rå</u>
                                                                                                                    into polygons first as this script works only with
     xOffset = proportion*xInterval

    Vertical Exaggeration

                                                                                                                    polygon features in the cross section.
     yOffset = proportion*yInterval
     newPoint.X = x1+xOffset

    Horizontal Resolution

     newPoint.Y = y1+yOffset
      array.add(newPoint)

    Output Geodatabase

     proportion = maxx/segmentLength
     xOffset = proportion*xInterval
                                                                    Name of 3D Feature Class
     yOffset = proportion*yInterval
     newPoint.X = x1+xOffset
     newPoint.Y = y1+yOffset
     array.add(newPoint)
      # build polyline feature with elevations
      cx3DRow = cx3DRows.newRow()
      cx3DRow.shape = array
                                                                                         Environments...
                                                                                                      << Hide Help
                                                                                                                      Tool Help
     if gUnitFieldName is not "#":
                                           #the blank gunit fic
                                                                                                                                            Complete
 Building 3D
                                                      Modify VRML
                                                                                  Build model in
                                                                                                              Modify state
                           Export VRML
cross sections
                                                                                    ReportGen
                                                            files
                                                                                                                                              model
```


The 3D cross section displayed in ArcScene ©

This is still not accessible to most users

So we export it to VRML (only export option) and ...

*Cross section as viewed in ArcScene. Note the discretized segments are apparent due to ArcScene's renderer.

Modify state file


```
127
     Group
128
129
      children
130
131
       Group
132
133
        children
134
135
                  # (Layer node)
136
           children
137
138
139
140
141
          Group
                  # (Layer node)
142
143
           children
144
145
            Shape
146
147
             appearance
148
              Appearance
149
150
               material
151
                Material
152
153
                 ambientIntensity 0.400
154
                 diffuseColor
                                    0.651 0.710 0.522
                                    0.000 0.000 0.000
155
                 emissiveColor
156
                 shininess
                                    1.000
157
                 specularColor
                                    0.000 0.000 0.000
158
                                    0.000
                 transparency
159
                 # end appearance
160
             geometry
161
162
              IndexedFaceSet
163
                      FALSE
164
               solid FALSE
165
166
               coord
   Building 3D
```

```
Group
128
      children
131
       Group
133
        children
134
135
                  # (Laver node)
136
137
           children
138
139
140
141
                  # (Layer node)
142
143
           children
144
145
            DEF cxa Qgt Shape
146
147
             appearance
148
              Appearance
149
150
               material
151
                Material
152
153
                 ambientIntensity 0.400
                                    0.651 0.710 0.522
154
                 diffuseColor
                                    0.000 0.000 0.000
155
                 emissiveColor
156
                 shininess
                                    1.000
157
                 specularColor
                                    0.000 0.000 0.000
158
                                    0.000
                 transparency
159
160
                   end appearance
161
             geometry
162
              IndexedFaceSet
163
164
                      FALSE
165
               solid FALSE
               coord
```

Preparation for conversion

VRML files export each scene feature as a "Shape". This means nothing to the user and is not very helpful.

We can open the VRML in a text editor and give each Shape a name.

As ArcScene groups shapes by color and transparency, each geologic unit is represented separate from the rest.

*Before and after of VRMI file in Notepad++, notice the change in line 145

Build model in ReportGen

Modify state

We bring it into ReportGen, a software developed by PDF3D for creating 3D pdfs from spatial data.

This allows us to take an inaccessible VRML file and convert it into a very accessible PDF

* ReportGen software with model built.

cross sections

ReportGen

Modify state

Supported File Formats

- · 3D GameStudio 3DGS Format (*.mdl)
- 3D GameStudio 3DGS Terrain Format (*.hmp)
- 30 Studio MAX Format (*.3ds)
- 3ds Max ASE Format (*.ase)
- AC3D Inivis Format (*.ac)
- AVS/Express UCD Format (*.inp)
- ArcGIS Geospatial Grid Format (*.asc)
- AutoCAD Export DWF Format (*.dwf)
- AutoCAD Generic DXF Format (*.dxf)
- AutoCAD Native DWG Format (*.dwg)
- Bentley-Intergraph Microstation DGN Format
- · Blender 3D Format (*.blend)
- BlitzBasic 3D Format (*.b3d)
- CATIA* v5 (*.catpart)
- Collada COLLAborative Design Activity Format (*.dae)
- COMSOL Simulation Results, Grid Format (*.dat, *.txt)
- Design Workshop Database (*.dw)
- DirectX 3D Model Format (*.x)
- DirectX X Format (*.x)
- Doom 3 Format (*.md5)
- ESRI ArcGIS Geospatial Vector Shapes
- Flash Animations or Movie clips (*.swf)
- · GeoTIFF Geospatial Image and Grid Data Format (*.tif)
- GeoVRML Geospatial Format (*.wrl)
- GSI3D Geological Models(*.gsipr, *.gxml)
- IGES* 3D Model Interchange (*.igs)
- Image Files (*.PNG, *.JPG, *.TIF, *.BMP)
- · IMAGINE Multi-Channel Image or Elevation
- Industry Foundation Classes IFC/STEP (*.ifc)
- Irricht Mesh Format (*.irmesh)
- Irricht Scene Format (*.irr)
- IVE OpenSceneGraph File Format (*.ive)
- KML Geospatial Vector Features (*.kml)
- Nendo Format (*.ndo)
- LAS Well Log (Subset) (*.las)
- LiDAR LAS File Format v1,2,3 (*.las)
- LiDAR LAZ Compressed Format (*.laz)
- · LightWave Object Format (*.lwo)
- LightWave Scene Format (*.lws)
- Milkshape 3D Format (*.ms3d)
- Modo Format (*.lxo)

- Movie.BYU Geometry Format (*.byu)
- Neutral File Format (*.nnf)
- OSG Extendable ASCI Format (*.osqt)
- OSG Extendable Binary Format (*.osgb)
- OSG Extendable XML Format (*.osgx)
- OSG Native Format (*.osg)
- OSGTGZ Compressed Format (*.osgtgz)
- Object File Format (*.off)
- · Ogre Graphics Engine XML Format (*.xml)
- OpenFlight Format (*.flt)
- OpenInventor 2.1 Compressed Format
- OpenInventor 2.1 Format (*.iv)
- Point Cloud Formats (*.csv,*.pts,*.xyz)
- Point Cloud with Color (*.xyzrgb, *.xyzi)
- Polygon File Format Stanford (*.ply)
- PovRAY Raw Format (*.raw)
- PRC Product Representation Compact Format (*.prc)
- Protein Data Bank Molecular Format (*.pdb)
- Quake I Format (*.mdl)
- Quake II Format (*.md2)
- Quake III Map/BSP (*.pk3)
- Quake III Mesh Format (*.md3)
- Quick3D Format (*.q3s)
- Return to Castle Wolfenstein Format (*.mdc)
- Sense8 WorldToolKit Format (*.nff)
- Starcraft II M3 Format (*.m3)
- STEP* 3D Model Interchange (*.stp)
- Stereolithography ASCII Multi-part File Format
- Stereolithography Binary File Format (*.stlb)
- Stereolithography STL File Format (*.stl)
- Surfer Grid Format (*.grd)
- Surfer Colormap Format (*.clr)
- Terragen Terrain Format (*.ter)
- TrueSpace Format (*.cob, *.scn)
- USGS DEM Geospatial Grid File Format (*.dem)
- Unreal Game Format (*.3d)
- VRML Compressed Format (*.wrz, *.vrml.gz)
- VRML Uncompressed Format (*.wrl, *.vrml)
- VTK PolyData Format (*.vtp)
- VTK Model File Format (*.vtk)
- Valve Model Format (*.smd, *.vta)
- · VOXLER 2, Scene format (*.iv)
- Wavefront Object Format (*.obj)
- XGL, XGL Format (*.xgl, *.zgl)
- ZMapPlus Geospatial Grid Field Format (*.dat)

An Aside:

Q: I don't have or like ArcScene, do I need to use it?

A: No, you don't. We chose to use it as we can visualize our models prior to conversion and for the ease of symbolization.

However, as you can see, ReportGen can handle many file formats directly including Shapefiles, ASC, XML, KML and many more...

Modify state


```
<CellSizeParameters width="100" geospatialWidth="1" squareCells="false" height="100" geospatialHeigh
    </GrdParameters>
    <Subsampling skipFullGrid="false" level="1"/>
    <BandBinding greenChannel="1" bindingMode="Automatic" attributeAutomatic="true" redChannel="0" greenAuto
    attributeChannelName="" redAutomatic="true" blueChannel="2"/>
    <ColormapBinding labelLegend="Elevation" usingTexture="true" filename=""/>
    <ElevationBinding bindingMode="Automatic" elevationAutomatic="true" elevationChannel="0"/>
    <Position autoPosition="false" useActualCenter="false">
        <ManualPosition x="0" y="0" z="0"/>
    </Position>
    <Scale generalScale="1" autoScale="false">
        <ScalePerComponent x="1" y="1" z="1"/>
    </Scale>
    <Visible value="true"/>
    <TerrainMode mode="Disabled"/>
</DefaultAssemblyProperties>
<PointsSubstitution substituteType="Automatic">
    <LinesLength value="1"/>
</PointsSubstitution>
<Metadata nodeName="gunitp wtr">
<MetadataItem key="Description" value="Condensate of dihydrogen oxide which has undergone a vertical transl</p>
quantities of dissolved salts and minerals."/>
<MetadataItem key="Age" value="Holocene"/>
<MetadataItem key="Name" value="Water"/>
<MetadataItem key="Unit" value="wtr"/>
</Metadata>
<Metadata nodeName="gunitp fault">
<MetadataItem key="Description" value="A planar or gently curved fracture in the rocks of the crust, where c</p>
the opposite sides of the fracture."/>
<MetadataItem key="Age" value=""/>
<MetadataItem key="Name" value="Fault"/>
<MetadataItem key="Unit" value="fault"/>
</Metadata>
<Metadata nodeName="gunitp Ei(p)">
<MetadataItem key="Description" value="Uniquely textured medium-K calc-alkaline dacite flows (~68% SiO2) wit</pre>
and dacitic bomb breccia; rocks are bluish gray to gray. These flows, fragmental volcanic rocks, and possibl
Lake Fontal on the SE highlands in the east-central part of the map area. The flows or possible hypabyssal i
aguot; knotsaguot; that define a subvertical mafic mineral lineation suggestive of vertical flow; however, th
requires further study. The flows are mostly holocrystalline and contain blocks of euhedral to microlitic pl
```

Reportgen produces a "state file" for the conversion written in XMI.

This means that we can modify it to change some parameters and add data such as unit symbols, descriptions, ages, you name it!

These descriptions were pulled from GIS and formatted in Excel to produce proper XML tags.

An entire map's worth of data can be converted in <10 minutes.


```
of the map area. Sherrod and others (2008) map many strands of the
          echelon vein arrays, suggest right-lateral strike-slip or oblique-
          the Johnsons Swamp fault zone, and the Fontal Road reverse fault."
999
          <MetadataItem key="Age" value="Tertiary to Holocene"/>
          <MetadataItem key="Name" value="Tectonic zone"/>
1001
          <MetadataItem key="Unit" value="tz"/>
1002
          </Metadata>
          <Metadata nodeName="cxb tz(h)">
1004
          <MetadataItem key="Description" value="Hydrothermally altered tect</pre>
          tz(h) contains principally low-temperature carbonate (calcite) min
1005
          <MetadataItem key="Age" value="Tertiary to Holocene"/>
1006
          <MetadataItem key="Name" value="Low-temperature, hydrothermally al</pre>
          <MetadataItem key="Unit" value="tz(h)"/>
1008
          </Metadata>
1009
          <JavaScript>
          yar ts3dhp Attributes = host.getField("A3DR Text");
          var myarray = [];
1012
          function findAndShowAttributes(node)
1014
          ts3dhp Attributes.value = "";
          if (node.metadataString != "")
1016
          myarray = [];
1018
          var localxml = new XML( node.metadataString );
1019
          yar xItems = localxml.item;
          for (yar j=0;xItems.length()>j;j++)
          yar name = xItems[j].@name.toString();
          yar value = xItems[j].@value.toString();
1024
          yar attribute = name + ": " + value;
          myarray.push(attribute);
1026
1027
           ts3dhp Attributes.value = myarray[3] + "\r\r" + myarray[2] + "\r\
1029
          if (ts3dhp Attributes != null)
1032
          yar ts3dhp PartAttributesSelect = new SelectionEventHandler();
           ts3dhp PartAttributesSelect.onEvent = function( event )
1034
          if (event.selected)
1036
          findAndShowAttributes(event.node);
1038
          ts3dhp Attributes.value = myarray[3] + "\r\r" + myarray[2] + "\r\
1039
1040
          runtime.addEventHandler( ts3dhp PartAttributesSelect);
1041
1043 </pdf3d:InputParameters>
```

colored, mottled, and veined as a result of local hydrothermal alt

Javascript is Acrobat's bread and butter, with it we can make tools to change the behavior or provide additional tools to the user.

The last step for us is to add a custom Javascript which will display our data on the PDF page when a unit is clicked.

*unit description provided when unit is clicked in model

Final Product!!!

Building 3D cross sections

Export VRML data

Modify VRML files

Build model in ReportGen

Modify state file

End of slideshow and beginning of live demonstration

For those who couldn't attend, follow along using any 3D model and the tutorials available at:

WA DGER 3D Geology webpage:

http://www.dnr.wa.gov/programs-and-services/geology/geologicmaps/3d-geology

Tutorial PDF:

https://fortress.wa.gov/dnr/geologydata/cartography/3d/3D_PDF_geologic_map_user_guide.pdf

Tutorial Video:

https://www.youtube.com/watch?v=b6wyGGqBVWM

Links are subject to change, see <u>dnr.wa.gov</u> if links here are broken.

