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INTRODUCTION

The Nisqually quadrangle is located at the south end of Puget Sound, straddling 
the Nisqually River, which is the boundary between Thurston and Pierce 
Counties. It includes part of Fort Lewis, which has limited access to areas used 
for artillery training, and part of the Nisqually Indian Reservation, which also 
has restricted access. The rest of the quadrangle is rural residential or 
agricultural land.

GEOLOGIC HISTORY

Late Wisconsinan–age Vashon Drift covers most of the quadrangle. Pre-Vashon 
units are generally exposed only along coastal or river bluffs, where mass 
wasting is common. Landslides and colluvium disrupt and obscure the 
continuity of exposures so that pre-Vashon geologic history is not easily 
deciphered. In the Puget Lowland south of Tacoma, all finite radiocarbon ages 
reported before 1966 are suspect due to laboratory contamination (Fairhall and 
others, 1966, p. 501). Stratigraphic assignments based on these radiocarbon ages 
are now questionable and need to be re-evaluated. We have systematically 
sampled all datable material from nonglacial sediments subjacent to the Vashon 
Drift and found them to be older than previously reported. With a few 
exceptions, these sediments have been beyond the range of radiocarbon dating.

The antiquity of the pre-Vashon units causes radiocarbon dating to be of 
little help for making correlations, and abrupt facies changes within glacial and 
nonglacial units also render correlations tenuous. Despite these difficulties, we 
have developed a conceptual model for the more recent pre-Vashon geologic 
history that is consistent with our observations but by no means compelling.

The oxygen-isotope stage 4 glaciation, called the Possession Glaciation in 
northern Puget Sound, was mild relative to stages 2 and 6 (Mix, 1987, and 
Fig. 1), represented by the Vashon and Double Bluff Drifts respectively in the 
Puget Lowland. The Possession ice sheet probably did not extend far south of 
Seattle (Lea, 1984; Troost, 1999). Because the ice sheet blocked drainage out of 
Puget Sound to the Strait of Juan de Fuca, a proglacial lake was impounded 
covering most of the southern Puget Lowland. Streams flowing into this lake, 
such as the Nisqually, Puyallup, and Skokomish Rivers, formed an alluvial plain 
and deltas grading to lake level. These nonglacial sediments, deposited during 
stage 4, are all radiocarbon-infinite and overlie and interfinger with Possession 
outwash deposits. Once Possession ice no longer impounded the lake (but sea 
level was still significantly below modern sea level), existing drainages, such as 
the Nisqually and Puyallup Rivers, deeply and rapidly incised into their former 
alluvial plains and became entrenched. At least initially, stage 3, called the 
Olympia Interglaciation locally (Armstrong and others, 1965), was characterized 
by downcutting and erosion. As sea level began to rise, most deposition was 
confined to these entrenched channels. Because stage 3 sea level was probably 
about 100 feet lower than modern sea level (Ludwig and others, 1996, and 
references therein), stage 3 deposits were areally restricted. As Vashon ice 
advanced and sea level fell again at the beginning of stage 2, these rivers 
preferentially downcut in the same channels, thereby eroding most of the late 
Olympia deposits, so that finite-aged Olympia deposits are rare above sea level.

As Vashon ice moved southward and grounded across the Strait of Juan de 
Fuca during stage 2, it dammed the northern outlet of the Puget Sound basin. 
Proglacial streams carried fluvial sediments southward into the Puget Lowland 
filling proglacial lakes and eventually the Puget Sound basin, first with silts, 
then sands and gravels. These sediments form the ‘great lowland fill’ of Booth 
(1994).  Ice overrode these sediments, covering most of them with till, or 
scoured them away to deposit till directly onto pre-Vashon sediments. Subglacial 
channels were subsequently eroded into the fill. Proglacial lakes became 
impounded in these channels at different elevations above today’s sea level as 
ice impinged on divides. The former lakebeds are presently the southernmost 
inlets of Puget Sound. (For a more thorough discussion of the subglacial channel 
network, see Booth, 1994, and Booth and Goldstein, 1994.) As these proglacial 
lakes spilled into lower-elevation basins and channels near the end of the 
Pleistocene, they deposited coarse, steeply dipping deltaic gravels along the 
margins of the channels and basins. Some of these deposits can be found near 
Steilacoom and Fort Lewis.

Much of the drainage originating from the ice sheet flowed southward and 
southwestward toward the Chehalis River. Some of the drainage probably 
occurred as glacial-lake outburst floods as valley-blocking ice dams breached 
during ice retreat. Deep troughs were carved out of the fill by subglacial fluvial 
erosion and extensive and complex terraces and braided channels were formed. 
As the ice receded, northward-flowing streams near Olympia filled the deep 
troughs with sandy sediments characterized by northward-directed paleocurrent 
indicators. These sediments provide evidence that drainage reorganized to flow 
northward through the recently formed outwash plain. The thickness of these 
sediments (unit Qgos) varies substantially throughout the area, reaching more 
than 400 ft just south of the map area at the Port of Olympia.

In the waning stages of the Fraser glaciation, glacial Lake Russell covered a 
large area of the southern Puget Lowland and deposited a relatively thin layer 
(1–10 ft) of fine grained varved sediments (unit Qgof) to an elevation of about 
140 ft. These lacustrine silts (and rare clays and peats) commonly overlie unit 
Qgos sands and Vashon till (unit Qgt). Unit Qgos is important because it is 
widespread throughout the populous South Sound area and appears to behave 
differently from the rest of the Vashon Drift during earthquakes (Palmer and 
others, 1999a,b; Bodle, 1992; King and others, 1990).

The oxygen-isotope stage 6 glaciation, called the Double Bluff Glaciation in 
northern Puget Sound, was probably as extensive as the stage 2 or Vashon Stade 
of the Fraser Glaciation (Mix, 1987; Fig. 1). The end moraines of this glaciation 
lie a short distance beyond the inferred limit of the Vashon ice in the vicinity of 
Tenino (Lea, 1984). Subglacial erosion was probably similar to the erosion that 
Booth (1994) documented beneath Vashon ice and would have left more 
accommodation space for deposition during the interglacial time of oxygen- 
isotope stage 5. For pre-Vashon nonglacial deposits that are radiocarbon-infinite, 
therefore, it is difficult to distinguish deposits of stage 3 from deposits of stage 5 
and we have not attempted to do so in the present mapping.

In some outcrops, however, tephras are present that provide a tool for 
geochemical correlation to known eruptions on nearby Cascade stratovolcanoes. 
Tephra correlations appear promising but will require more data.

PREVIOUS GEOLOGIC MAPPING

The glacial history and geology of south Puget Sound are well-summarized by 
Bretz (1913), who mapped the entire Puget Sound basin in reconnaissance. 
Noble and Wallace (1966, 1:72,400) and Walters and Kimmel (1968, 1:48,000) 
produced small-scale water resources studies. The Coastal Zone Atlas 
(Washington Department of Ecology, 1979, 1980) provides mapping of a 2000-
ft-wide strip along the shoreline at a scale of 1:24,000. Walsh (1987), Walsh and 
others (1987), and Palmer and others (1999a) compiled and augmented previous 
mapping.

MAPPING METHODS

For the present map, we inspected available construction site excavations, gravel 
pits, and roadcuts. We surveyed the shorelines by boat and took samples and 
measured sections at cliff exposures. Contacts between map units are commonly 
not exposed and are only approximately located. They are generally located by 
outcrop mapping, air photo and lidar interpretation, interpretations of water well 
logs from Washington Department of Ecology geotechnical site reports, and, in 
part, modified from Drost and others (1998). USDA soil maps (Pringle, 1990; 
Zulauf, 1979) helped guide the location of peats and the contacts between sandy 
and gravelly units. Location accuracy of contacts is judged to be about 200 ft in 
general. In addition, the contacts between some units are gradational. We have 
tried to consider geotechnical significance in mapping geological units and have 
attempted to show units only where they are thicker than 5 to 10 ft or mask the 
underlying lithology.
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DESCRIPTION OF UNITS

Quaternary Unconsolidated Deposits

HOLOCENE NONGLACIAL DEPOSITS

	 Qf	 Fill—Clay, silt, sand, gravel, organic matter, shells, rip-rap, and 
debris; includes engineered and non-engineered fills; shown only 
where fill placement is extensive, sufficiently thick to be of 
geotechnical significance, and readily verifiable.

	Qml	 Modified land—Soil, sediment, or other geologic material that has 
been locally reworked to modify the topography by excavation and 
(or) redistribution.

	 Qa	 Alluvium—Silt, sand, gravel, and peat deposited in stream beds and 
estuaries; may include some lacustrine and beach deposits.

	 Qb	 Beach deposits—Mud and sand deposited in the intertidal zone or 
residual gravel on a wave-cut platform.

	Qmw	 Colluvium and alluvial fans—Loose soil and glacial sand and 
gravel deposited by soil creep and shallow ravelling on hillslopes and 
alluvial fan deposition, some of which occurred during the waning 
stages of the Vashon Stade of the Fraser Glaciation. Shown where 
colluvium or fan deposits are of sufficient thickness to mask 
underlying geologic strata.

	 Qp	 Peat—Organic and organic-matter-rich mineral sediments deposited 
in closed depressions; includes peat, muck, silt, and clay in and 
adjacent to wetlands.

PLEISTOCENE GLACIAL DEPOSITS

Deposits of Continental Glaciers—Cordilleran Ice Sheet

VASHON STADE OF THE FRASER GLACIATION
Glacial sediments described in this section consist mostly of rock types of 
northern provenance, most from the Canadian Coast Range. A wide variety of 
metamorphic and intrusive igneous rocks not indigenous to the Puget Lowland 
and generally southerly directed current indicators help distinguish these 
materials from the volcanic-lithic-rich sediments of the eastern Puget Lowland 
and the Crescent Basalt/Olympic core–rich sediments of the western Puget 
Lowland.

	Qgof	 Latest Vashon fine-grained sediments—Lacustrine clayey and (or) 
fine sandy silt with sparse, disseminated dropstones; laminated and 
commonly vertically jointed; medium gray where fresh to pale yellow 
where dry and oxidized. In both fresh and oxidized exposures, this 
unit is distinguished by relatively darker (chocolate brown in oxidized 
exposures) horizontal bands about 1 in. thick that may represent 
annual winter depositional layers in a varve sequence; no more than 
about 20 apparent varves were counted in any exposure, suggesting a 
short life for the glacial lake(s) in which unit Qgof was deposited; 
present in deposits ranging up to 10 ft thick over much of southern 
Puget Lowland and most commonly found at elevations below about 
140 ft; mapped where it is thought to be at least about 5 ft thick or 
where it masks the underlying geomorphology; includes deposits of 
glacial Lake Russell and other lakes of the Vashon glacial recession.

	Qgos	 Latest Vashon recessional sand and minor silt—Moderately well-
sorted, moderately to well-rounded, fine- to medium-grained sand 
with minor silt; noncohesive and highly permeable; thickness inferred 
from wells reaches up to 100 ft; deposited in and around the margins 
of glacial lakes; surrounds numerous steep-walled lakes and 
depressions (kettles), evidence that this unit was largely deposited 
during deglaciation when there was stagnant ice occupying much of 
the southern Puget Lowland.

	Qgog	 Vashon recessional outwash gravel (Steilacoom Gravel)—Pebble 
to boulder gravel exposed in the southeast corner of the Lacey 
quadrangle and the eastern half of the Nisqually quadrangle. At 
Dupont, just outside of the map area, the gravel is about 200 ft thick 
with large foresets that dip west-northwest toward Puget Sound, 
forming the Sequalichew Delta of Bretz (1913), who interpreted it as 
discharge from glacial Lake Puyallup.

	 Qgo	 Vashon recessional outwash—Recessional and proglacial stratified, 
moderately to well-rounded, poorly to moderately sorted outwash 
sand and gravel of northern or mixed northern and Cascade source, 
locally containing silt and clay; also contains lacustrine deposits and 
ice-contact stratified drift. Some areas mapped as unit Qgo may 
instead be advance outwash (unit Qga), as it is difficult to tell the 
difference between the two without the presence of an intervening till.

	 Qgt	 Vashon till—Unstratified and, in most exposures, highly compacted 
mixture of clay, silt, sand, and gravel deposited directly by glacier 
ice; gray where fresh and light yellowish brown where oxidized; 
unsorted and, in most exposures, of very low permeability; most 
commonly matrix-supported but may be clast-supported; matrix 
generally has a more gritty feel than outwash sands when rubbed 
between fingers, due to being more angular than water-worked 
sediments; cobbles and boulders commonly faceted and (or) striated; 
ranges in thickness from wispy, discontinuous layers less than 1 in. to 
more than 30 ft thick; thicknesses of 2 to 10 ft are most common; 
mapped till commonly includes outwash clay, silt, sand, gravel, or 
ablation till that is too thin to substantially mask the underlying, 
rolling till plain; erratic boulders are commonly associated with till 
plains but may also occur as lag deposits where the underlying 
deposits have been modified by meltwater; typically, weakly 
developed modern soil has formed on the cap of loose gravel, but the 
underlying till is unweathered; local textural features in the till 
include flow banding and apophyses commonly extending 10 to 15 ft 
downward into underlying sand and gravel that are oriented 
transverse to ice flow direction.

	Qgic	 Ice-contact deposits—Mix of deposits from undifferentiated 
dynamic ice and dead ice. Dynamic ice deposits include lodgment till, 
drumlins, and advance outwash; dead-ice deposits include ablation 
till, subglacial water flow deposits (such as eskers), and recessional 
outwash; typically lacks thick, continuous, or widespread deposits of 
lodgement till at the ground surface, though small till exposures and 
detrital till fragments are common; topography formed by a mix of 
subglacial, ice-marginal, and recessional processes.

	 Gge	 Eskers—Sinuous, steep-walled mounds of loose gravel and sand 
deposited in ice-confined channels by glacial meltwater.

	 Qga	 Vashon advance outwash—Sand and gravel and lacustrine clay, silt, 
and sand of northern or mixed northern and Cascadian source, 
deposited during glacial advance; locally contains nonglacial 
sediments, typified by silt rip-ups, cobbles, and peat rip-ups as lag 
along channel sides and bottoms; gray where fresh, light yellowish 
gray where stained; isolated exposures of lacustrine silt and clay (unit 
Qgaf) resemble older glaciolacustrine units. Age of maximum Vashon 
ice advance in the map area was previously estimated to be 
approximately 14,000 radiocarbon yr B.P., based on apparent post-
glacial deposits in the central Puget Lowland that were radiocarbon 
dated at about 13,600 radiocarbon yr B.P. (Porter and Swanson, 
1998). However, five more-recently obtained radiocarbon dates from 
deposits that underlie Vashon till in the southern Puget Lowland, 
including a deposit of unit Qgaf in this quadrangle, indicate a 
maximum ice advance after about 13,400 radiocarbon years B.P. 
(Borden and Troost, 2001, and this study), leaving very little time for 
the glacial advance and recession into the southern Puget Lowland; 
most exposures mapped as Vashon till lack geochronologic data and 
are interpreted as Vashon till based on occurrence at or near the top of 
the stratigraphic section.

PLEISTOCENE DEPOSITS OLDER THAN VASHON DRIFT

	 Qps	 Pre-Vashon sand-size or finer deposits—Massive to cross-bedded 
sand interbedded with laminated silt and minor peat, diatomite, and 
gravel; immediately subjacent to Vashon Drift and generally 
overlying unit Qpg. This unit is thought to be of nonglacial origin, 
and is dominated by varied Cascade-source volcanic lithic rock types. 
These sediments have previously been referred to the Kitsap 
Formation and were inferred to be of Olympia age, although all 
known deposits in the south Puget Lowland are older than the type 
section of the Olympia nonglacial interval (Armstrong and others, 
1965) and most are radiocarbon-infinite or suspect. Previously 
reported finite radiocarbon ages in the southern Puget Sound area 
range from 27,900 to 50,500 yr B.P. (Yount and others, 1980; Walsh, 
1987), although all finite ages other than the 50,500 yr B.P. age are 
suspect due to laboratory contamination (Fairhall and others, 1966, 
p. 501). We have obtained two finite radiocarbon ages on this 
quadrangle (Table 1). Deeter (1979) has shown that the type locality 
of the Kitsap Formation includes radiocarbon-infinite sediments of 
both glacial and nonglacial origin, and we follow his suggestion that 
the name be abandoned. Because we cannot establish that all pre-
Vashon nonglacial sediments are correlative, we have chosen not to 
assign them a stratigraphic name.

	Qpg	 Pre-Vashon gravel—Gravel and sand, generally of mixed northern 
and Cascade Range provenance; moderately to poorly sorted; 
commonly cross bedded but may lack primary sedimentary 
structures; commonly tinted orange with iron-oxide staining; 
stratigraphically underlying the Vashon Drift; most commonly 
exposed immediately underneath exposures of unit Qps; gravelly 
portions of unit Qpg are relatively resistant to erosion; inferred to be 
of glacial origin because interglacial conditions do not appear 
conducive to streams with sufficient competency to deposit 
widespread gravels in most of the Puget Lowland and because the 
majority of the exposures include northern-source metamorphic rock 
clasts.

	 Qpc	 Pre-Vashon sediment of Cascade Range source, 
undifferentiated—Gravel, sand, silt, clay, peat, and diamicton; 
lithologically dominated by volcanolithic clasts of Mount Rainier or 
other Cascade Range sources; paleocurrent indicators at a prominent 
exposure near the southeast corner of the quadrangle suggest a 
southerly source (Figs. 2, 3); large boulders (≤8 ft in diameter) in this 
unit are deeply weathered (notches with chisel end of hammer to a 
depth of at least several inches); most cobbles and boulders, however, 
have weathering rinds less than 1 mm; some boulders are glacially 
striated, suggesting that this unit may be a Cascade- (Mount Rainier-) 
source alpine drift; weathering rinds suggest both late Pleistocene and 
early Pleistocene drifts (Colman and Pierce, 1981); we tentatively 
suggest correlations to Hayden Creek and Wingate Hill Drifts, but 
this unit also contains scattered exposures of lahar deposits, lake 
sediments, and alluvium of both glacial and interglacial origin.
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Figure 3.  Paleocurrent rose for unit Qpc at the outcrop shown in 
Figure 2. All measurements were made on angle-of-repose 
crossbeds with truncated upper surface.

Figure 2.  Outcrop of unit Qpc on the right bank of the Nisqually River at south edge of map (near stratigraphic column location 5). These sediments underlie the Vashon Drift and are radiocarbon-infinite. All gravel 
examined had a predominent Cascade source (black aphanitic andesite, with abundant green tuff-breccia). Note the foreset bedding dipping to the left (northward). Paleocurrent analysis (Fig. 3) indicates a southerly 
source.

Figure 1.  Marine oxygen-isotope stages (from Morrison, 1991). The numbers within the graph are stage numbers; the even-
numbered peaks (at top) are glacial maxima and the odd-numbered troughs (at bottom) are interglacial minima. The blue areas 
indicate interglacial episodes, based on a cutoff at -0.5 δ18O oxygen-isotope values (equivalent to Holocene interglacial values).
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