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ARSTRACT

The basic physics of forest stream heating is investigated. Expressions for the
individual energy transfer modes are developed in a simple and direct manner so
that the parametric influence of various environmental conditions can be
established. The environmental conditions include the daily average solar
insolation, local air temperature, shading by riparian vegetation, air velocity and
relative humidity, and groundwater intrusion. A mathematical model is developed
and applied over a broad range of conditions. The predicted stream temperature is
broken into two components, the daily mean stream temperature and the stream
temperature fluctuations about the mean. The actual stream temperature is the
sum of these two. Three major conclusions are drawn from the model results. First,
the daily mean stream temperature is always very near the daily mean air
temperature when the stream is in equilibrium with the environment. Other
environmental parameters including solar insolation are shown to have relatively
little influence  on the daily mean stream temperature after an initial transient
heating period. In contrast, the fluctuations in stream temperature about the mean
are strongly influenced by solar insolation, riparian vegetation, and diurnal
fluctuations in air temperature. Second, stream depth is the primary geometric
parameter characterizing stream size for energy transfer purposes. Stream depth
affects both the response time and magnitude of the fluctuations in stream
temperature. Third, groundwater influx is an important .factor  in the temperature
of small streams.

The full energy transfer model is then linearized so that an analytical solution is
possible, and both the mean stream temperature and the fluctuating component of
stream temperature are expressed as algebraic functions of only ten important
environmental parameters. Comparison between the linearized model and the full
model is shown to be very good. The basic results of the full model are contiied by
the linearized model.

r N. Adams/Kathleen Sullivan
I , APPROVED BY /DATE



INTRODUCTION

The temperature of natural streams is recognized to be important to aquatic life and fish

productivity. This has led to studies of the response of stream temperature to environmental

conditions for a variety of situations. Data reported on stream temperature for some specific

situations identified key environmental characteristics important to stream temperature

response for particular situations. Several studies combined field data with mathematical

models. Solar radiation input has been identified as the primary environmental variable

responsible for raising the temperature of small forest streams from initial groundwater

temperature [Brown, 1969; Brown and Krygier, 1970; Vugts, 1974; Crittenden, 19781.

Evaporative energy loss, longwave  radiation loss, and convective loss have been identified

as the important energy nansfer  modes in cooling large streams downsneam  from the

thermal outfall of power plants [Messinger, 1963; Ryan, 1974; DeWalle,  19761,  and for
being of primary importance in cooling ponds. Other studies [Raphael, 1962; Delay and

Seaders, 1966; Morse, 1970; Beschta, 1984, Theurer, 19841  have incorporated all the

energy transfer modes into stream network models to predict temperature of streams

throughout a watershed.

The picture which emerges from these studies is that there are at least six main modes of

energy transfer important in stream temperature: shortwave solar radiation, longwave
radiation exchange between the stream and both the adjacent vegetation and the sky,

evaporative exchange between the stream and the air, convective exchange between the

sneam  and the air, conduction transfer between stream and the streambed, and groundwater

exchange with the stream. The importance of each mode varies according to the situation.

In every situation there are always several energy transfer modes involved and this makes it

difficult to establish precise predictive equations for each mode for streams in natural

settings.

The temperature of natural streams follows a fairly simple pattern. There is an initial

transient period when the stream temperature is raised or lowered from its initial

temperature to a temperature which is nearly in balance with environmental conditions. This

latter situation is referred to as the equilibrium condition, though this does not imply that

the stream temperature is necessarily constant. After the equilibrium condition is reached,

the stream temperature is independent of the initial conditions. Overlayed on this response

of the average stream temperature is a cyclic diurnal pattern due to temporal variation in

solar input and air temperature. Even after the initial transient is over there are cyclic



variations in stream temperature over the course of the day. Brown [1969],  Brown and
Krygier [1970],  and Vugts [1974]  measured the temperature response of small streams
during the initial transient period. Edinger, et. al. [1968]  and Smith and Lavis [1975]
measured the cyclic variation of small streams after the initial transient was over. Not
surprisingly, the relative importance of the environmental conditions and energy transfer
modes would be different for these two cases.

Large integrated computer models [Beschta, 1984; Theurer, 19841  could accommodate
stream size effects, transient or cyclic/steady conditions, or environmental parameters.
However, they do not allow the relative importance of the energy transfer modes to be
readily identified nor the sensitivity of the results to model assumptions and formulation to
be investigated.

The purpose of this paper is to develop a stream temperatune  model to investigate the basic
physics of stream temperature. Each term in the energy budget will be developed in a
simple and direct fashion with the intent of capturing the correct parametric influences but
not the detailed site-specific data The energy transfer terms will be incorporated into the
differential equation which describes the energy budget for a stream element. This equation
will be solved numerically in order to demonstrate several important features of stream
temperature response. Effects of stream size and environmental conditions on transient
temperature profile and diurnal variation will be demonstrated.

- . -~. . . ..,  . . . . ~.uevetopment  or me numerical  moue1  is omy a pretunmary  step to me more unportant ana
useful linearized analytical model, To develop this, each equation describing the energy
transfer modes will be linearized. The linearized differential energy budget equation will
then be solved analytically to produce algebraic expressions for the transient temperature
response, the daily average stream temperature, and the diurnal variation in stream
temperature. The results for the linearized model will be compared to the results of the full
numerical modeL

Three significant advantages of the linearized approach will be demonstrated. The algebraic
solutions to the linearized model allow ready assessment of the impact of environmental
conditions and stream size on stream  transient temperature response, daily average stream
temperature, and diurnal variation in stream temperature. It also preserves the individual
energy transfer exchange terms so that they may be readily modified as new and better
descriptions emerge. Finally, and most importantly, for the present work, it allows
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correlation techniques to be developed for portraying field data. These will be used in a
companion paper “KATE SULLIVAN” to portray a vast amount of stream temperature data

taken in the Pacific Northwest. The organized portrayal of this diverse data will help
establish the validity of the modeling approach and the general validity of the expressions
for the  individual energy transfer terms.

This paper is broken into several parts. The first part describes the equations used for each
of the energy transfer modes. The second part develops the energy budget equation for a
stream element based on these modes and shows results from the numerical solution of the
differential equation. The third part develops the linearized energy budget equation.
Comparison between numerical and analytical solutions is presented. The fourth part
discusses the basic physics of forest stream temperature, presents the conclusions drawn
from the modeling work, and identifies methods for most clearly portraying field data.

THE ENERGY TRANSFER MODES

Vertical and Lateral Stream Temuemture  Uniformi~

An important assumption that will be used in the development of the stream temperature
model is that stream  temperature is uniform in the vertical and lateral directions. This
assumption of goad  mixing means that the stream top surface temperature is the same as the
bulk stream temperature.

The level of mixing and turbulence for flowing streams depends on the relative importance
of inertial forces and viscous forces. The Reynolds number is used to express this for most
flow situations. Reynolds number is the ratio of inertia forces to the viscous forces for the
flow. When the Reynolds number is above approximately 600 [Crittenden, 19781  the
stream is in turbulent flow. Under turbulent flow conditions mixing is high and temperature
gradients in the vertical and lateral directions are small. The Reynolds number is given by:

Re=w
v

(1)

Here the stream depth, D, is taken as the characteristic dimension of the stream The value
of the kinematic viscosity, v, for water at 20°C  is 1x10-6  m%. A relatively shallow stream
10 cm in depth with a relatively low velocity, Vs. of 10 cm/s would then have a Reynolds
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number of 10,000. In general, flowing streams have Reynolds numbers very  far above the
threshold for turbulent mixing.

Based on the value of Reynolds number, the assumption of uniform lateral and vertical
temperature is a good one for natural streams. This makes the formulation of the energy
budget substantially easier and leads to two important simplifications in the formulation of
the heat transfer equations for solar radiation and streambcd  conduction.

Solar Radiation

Shortwave solar radiation heat input to a sneam has been investigated and modeled in
previous work [Anderson, 1954; Koberg, 1964, Beschta, 1984; Theurer,  19841.  Solar
radiation arrives at the stream surface either directly or by diffuse pathways due to scatter in
the atmosphere or reflection from topographic features. The only precise method of
obtaining solar radiation input to a stream is to measure it for a specific site at a specific
time.

Methods for estimating solar radiation input to a stream vary considerable in complexity.
The important features that must be taken into account in order to estimate solar input are
that: 1) solar insolation varies with geographic location, 2) it varies over the course of the
day, 3) it can be reduced approximately uniformly over the course of the day by clouds,
and 4) it can be blocked for portions of the day by adjacent riparian vegetation and
topographic features. The approach used here accounts for each of these factors in simple
(and therefore approximate) ways. The advantage sought in this formulation is ready
assessment of the magnitude of each factor for a particular site and ready assessment of the
predicted stream tetnperature  sensitivity to each factor.

The solar insolation that would reach the stream top surface on a clear day when there is no
blocking by riparian vegetation or topographic features  is the instantaneous solar insolation.
This will be calculated from the product of the peak solar insolation for the day multiplied
by a time-of-the-day-factor, TODF. The peak solar flux is approximately 2.7 times the
more readily available [Kreidcr and Krcith,  19771  average daily insolation, LJ.  The value of
2.7 is based on typical solar insolation profiles mith  and Black, 19801.  For the Pacific
Northwest of the U. S., the summertime average daily solar insolation is approximately
280 W/m2.  This value will be used in some of the example cases presented below.
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The clear-sky, unobstructed solar insolation calculated as described above must be
multiplied by a blocking factor, BF, and a factor which shows the impact of the fraction of
cloud cover, CF.  to obtain the actual solar heat flux reaching the smeam.  It must also be
multiplied by an effective absorptivity of the sueam  for shortwave radiation, osw  When all
these factors are included the expression for solar heat flux to the stream becomes:

qso~ar  = 2.7 41  asw Cl-  0.7 CF)  (BF)  O-ODF) W/m2 (2)

The cloudiness factor, CF, in Equation (2) is the fraction of sky covered by clouds. It has a
value between zero and one. On a very dark, cloudy day the value of CF is zero. Solar
radiation does not go to zero on these days because of the diffuse component of solar
radiation. The factor 0.7 multiplying CF is an average value based measurements of the
effect of cloudiness on solar insolation [Raphael, 19621.  This value is, in fact, a function of
the type and altitude of the cloud cover, but these effects will not be specifically taken into
account here.

Specifying CF requires judgement, but this is fortunately not very difficult for the current
purposes. One of the most important periods for studying stream  temperature is during the
summer months because of potential sueam heating and its effect on aquatic life. During
this time the cloudiness factor is usually quite low at locations away from coastal areas.
Second, like many other parameters, it will be shown that stream temperature predications
are not very sensitive to the exact specification of CF.

The time-of-day factor, TODF, could be handled in many ways including numerical
specifications of a solar insolation hourly variation. For the current purpose a simple cosine
profile has been used [Rdinger,  et. al., 1968; Beschta, 19841  so that:

This particular form would indicate a negative solar flux if it were not multiplied by a
blocking factor, BF, which had a value of zero during the night time hours. The TODF
assumes that the maximum solar insolation occurs at 12 noon. As well, the sun shines for
12 hours during the day from 6~00  to 18:O0. This approximates the conditions for the
summertime which is most critical for stream heating. The expression would have to be
modified for other times of the year by changing the phase angle in Equation (3). Using a

6



value of 5x/6  for the phase angle in Equation (3) would yield a solar insolation maximum at
1490  (290 p.m.), for example.

The blocking factor has two important purposes. It reduces the solar insolation to zero at
night and it accounts for the blocking of solar radiation for periods during the day due to
riparian vegetation and topographic features. The specific equation given below for BF
makes use of a view factor of the water for the sky, FWky.  In dealing with radiation heat
transfer, use must be made of view factors. These specify the fraction of the total
hemispherical view from the sueam  surface that is occupied by various features. The total
view from the stream surface is occupied either by the sky or by the vegetation and
topographic features. FWsky  specifies the fraction of the view occupied by the  sky. For a
stream on a flat plane with no riparian vegetation, FWsky  = 1. For a stream completely
cont%ed  by stream  bank and riparian vegetation, the value of FWaky = 0. The view factor of
the stream for the riparian vegetation and stream bank is l-  F,w

The blocking factor, BF, uses the value of FWaky to estimate the time that the sun is blocked
by the riparian vegetation. Essentially this approach assumes that the stream sees the sun in
the same way that it sees the sky, i. e. the sun is blocked for the same portion of the day as
the view of the sky is obscured by riparian vegetation. In equation form this becomes:

B F  =l  i f  himeofday-121c6F,.,sky
=0 otherwise

(4)

Note that the stream sees the sky continuously in a portion of its total view indicated by
Ewsky while  the stream sees the sun with a view factor of 1 through part of the day and
with a view factor of zero for the rest of the day and night. Also note that the blocking
factor is symmetric about the maximum solar insolation point of 12 noon in this
formulation.

The expression for BF is only accurate for three situation, when Fwsky is either 0 or 1, or
when the saeam is running north-south with uniform vegetation on both sided. For all
other situations there is some inaccuracy in this formulation. For the purpose of the current
development this is satisfactory. One important practical situation that can be accurately
assessed using this approach is the effect of complete removal of riparian vegetation from
relatively small, heavily forested streams. It can, as well, show the general sensitivity of
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stream temperature to various degrees of solar blocking, which is the main thrust of the
present work.

The value of water absorptivity for shortwave solar radiation, asw, would initially appear
more difficult to specify. Several studies have shown that the absorptivity and emissivity of
water for lonawave radiation is very high Foberg,  1964; Ekiinger,  et. al., 1968; Morse,
1970; DeWalle,  19761,  near 0.95. However, shortwave solar radiation is not as well
absorbed by water. Measurements confirm  the everyday experience of being able to see the
bottom of the deepest swimming pool, indicating that &, is considerably less than 0.95.
Calculations [Crittenden, 19781  portray the absorptivity of water for shortwave radiation
quite clearly. There is an initial rapid absorption of about 20% of the incident solar radiation
witbin  about 10 cm depth. Thereafter, absorption increases only slowly to a value near
50% at 2 m. For shallow, clear streams this would indicate relatively low absorptivity for
solar radiation. However, the particular physical situation and geomeuy  of streams make
specification of an effective absorptivity considerably easier.

Solar radiation could penetrate a clear stream with little absorption, but would then strike
the streambed surface where absorption is very high [Crittenden, 19781.  Very little of the
solar radiation would be reflected by typical streambeds, particularly if they are rough or
gravelly. Because the stream and streambed are both in contact with the surface of
absorption, the solar energy will be split between the two. The characteristic which
determines the relative split between the two is their effective thermal diifusivity
[Crittenden, 19781.  When the stream Reynolds number is high, its effective turbulent
thermal diffttsivity  is several orders of magnitude higher than that for any natural streambed
material of rocks and soil [Crittenden, 1978; Kreith, 19731.  Under these circumstances the
solar radiation absorbed by the streambed surface  would be rapidly transferred to the
stream, just as if it had been absorbed by the water in the first place.

Absorption by the stream/streambed  is very high, so that the only solar insolation striking
the stream surface which is not ultimately absorbed by the stream is that fraction which is
reflected. During the periods of the day when solar heating is most intense the sun is high
and the reflectivity is quite low, typically about 5% [Anderson, 1954, Raphael, 1962;
Kokrg,  1964, Beschta, 19841,  so that the effective absorptivity is approximately 0.95.
This situation is similar to that for longwave radiation for which the absorptivity and
emissivity are approximately 0.95. This value will be used for the absorptivity and
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emissidy  of streams for all wavelengths, recognizing that it is only an effective value for
shortwave solar radiation for the particular situation of natural streams.

Radiation exchange with the skv

The stream exchanges longwave  radiation with the infrared-active constituents of the
atmosphere, principally Hz0 and Ca. Radiation exchange with gasses in low
concentrations involves very long pathlengths, often several kilometers [Hottel and
Sarofim, 19671.  Such long pathlengths are rarely at uniform temperature. The sueam  looks
upward and, because the temperature of the atmosphere decreases with elevation, the
effective sky radiation to the stream is always lower than that for the local ground level air
temperature.

Several expressions are available for the sky radiation [Anderson, 1954; Raphael, 1962;
Koberg, 19w,  Theurer, 19841.  These expressions can take into account both cloudiness
and the relative humidity of the air. However, in the summer months when stream heating
is of most concern neither of these effects is very important. All the expressions produce
sky radiation that is well correlated by a simple empirical expression which has been used
elsewherelRaphael,1962]  to predict sky radiation absorbed by the stream:

W/m2 (5)

with

E&y  = 0.74 + 0.0049 Q (6)

This expression for E* is specifically for scattered or broken cloud conditions and not for

low overcast. This is satisfactory for summertime conditions. The expression can be
modified for both the elevation and density of the cloud cover [Raphael, 19621.

The value for effective sky emissivity, EQ, when the partial pressure of water vapor in the
atmosphere is 15 mbar is 0.81 according to Equation (6). The resulting radiation to the
stream tirn  the sky when the air temperature is 20°C  is equivalent to that of a surface at
5%



The absorptivity of the stream water for longwave radiation, q,, is apprcknately  0.95, a

discussed above.

The stream exchanges iongwave radiation with the riparian  vegetation and the ground neat
the stream. Both are assumed to be at the local air temperature. Using the same
approximation for alw  as for the sky radiation, the radiation exchange between the stream

and the riparian vegetation is:

Evanoration

The processes of evaporation and convective energy transfer are closely related. Both
depend on transfer coefficients due to aerodynamic and buoyancy forces. Most studies
have used the Bowen  ratio @Owen,  19261  to relate the two mansfer  coefficients which is
based on the well know theoretical similarity of mass, momentum and energy transfer
mith, 19731.  The driving potential for evaporation is the difference in the partial pressure
of water vapor in the air immediately adjacent to the stream surface, Pqw), and the water
vapor partial pressure in the bulk air, %. The driving potential for heat transfer is the
difference in temperature between the stream surface, TW.  and the bulk air outside the
boundary layer adjacent to the  stream surface, Ta. The partial pressure of water vapor
adjacent to the surface is always taken as the saturation pressure of water vapor at the
stream surface temperature. The bulk air water vapor partial  pressure is determined from
measurement of air temperature and relative humidity.

A standard for the proper height above the stream surface for measuring the bulk air
conditions has not been adopted. It has been taken as high as 2m [Anderson, 19541.  This
measurement height has been necessary for many previous studies of lake, pond, and
stream evaporation due to the large boundary layers associated with very large open water
surfaces. For most natural streams the actual  boundary layer could be no more than a few
centimeters [Kreith,  19731.  For the current purposes, as long as the bulk air measurements
are taken above this level little error in stream temperature will be incurred
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NO prediction of stream temperature will be without errors. The hope is that tire  predicted
temperatures are not very sensitive to model and coefficient assumptions. For evaporative
studies the value of the transfer coefficient and bulk air conditions directly impact the
predicted rate of evaporation. When predicting stream temperature, however, these same
errors have considerable less impact. They do cause an error in the predicted temperature
but, because the saturation pressure of water is so sensitive to stream temperature,  only a
very small error in stream temperature is incurred. The purpose of the linearized model and
algebraic solution developed below is to be able to easily test the sensitivity of predicted
temperature to assumptions and potential errors. The algebraic solution also allows
alternative formulations of the transfer coefficients to be substituted for the ones selected
here.

The evaporation rate can then be expressed in terms of the bulk air water vapor partial
pressure, ea, the saturation partial pressure of water vapor at the stream temperature,
P(Tw),  and the evaporative transfer coefficient, k,=,  which is a function of the wind
velocity:

Evaporative flux = Ge = ke { e, - P(T,v) } kglm2/s (8)

The saturation partial pressure of water vapor in the range from 274’K  (1’C) to 303°K
(3O’C)  can be calculated from the expression:

P(Tw) =1.13x10-7expI0.0653  Tw) mbar (9)

The evaporative transfer coefficient has been the subject of many studies. It is often
referred to as the velocity function. Empirically it has been found to have the form:

ke=a+bV (10)

In studies where forced convection dominates the transfer process the value of the first term
is zero. This was the situation in the Lake Hefner Study [Marciano and Harbeck, 19541.
For many other situations such as cooling ponds and small streams the first term can be
quite significant [Messinger, 1963; Shulyakovskiy, 1969; Ryan, 1974; DeWalle,  19761.
This term has been associated with free convection and is in  fact a function of the difference
in gas density between the stream surface and the air [Ryan, 1974; DeWaRe,  1976;
Beschta, 19841.  This term is often cast in the form of a temperature difference between the



stream surface and the air, or the same difference corrected for the partial pressure of water
vapor. In either case it is raised to a low power, typically the one-third power, which is
consistent with theoretical development of free convection equations. When the temperamre
difference is less than Y’C this term is very nearly constant [Ryan, 19741.  One formulation
of the velocity function for conditions of mild forced convection and small temperature
gradients will bc used here [Shulyakovskiy, 19691:

k, = 1.74x10-6 (1 + 0.72 Va)

Convective Heat Exchange  with the Air

kg/m%/mbar (11)

The rates of convection and evaporation are almost  always related through the Bowen  ratio
[Bowen,  19261  which has a very good theoretical base [Kreith, 19731.  The Bowen  ratio or
its equivalent [Anderson, 1954; Raphael, 1962; Fdinger, et. al., 1968; Morse, 1970,
Vugts, 1974; Ryan, 1974; DeWaRe,  19761  can be used to relate the convective heat transfer
coefficient, hc,  to the evaporative transfer coefficient for evaporation, ke:

= 1.5x106 J mbar
kg ‘C

In the range of conditions of interest for forest streams, the convective transfer coefficient
is not strongly affected by any parameter except wind velocity [McAdams,  1954; Kreith,
19731  which is taken into account directly in the expression for ke in Equation  (11).

The convective heat transfer expression is then:

qconv  = h, Cr,  - ‘fw)

Conduction to the Streambed

W/m2 (13)

The stream is in contact with the sueambed  so there will be heat transfer between the two.
Indeed, for porous or gravelly streambeds,  the demarcation between the stream and the bed
is not entirely clear. Energy transfer between the two can be by two entirely different
mechanisms, groundwater mass transfer (which will be treated below) and by heat
conduction. The impact of heat conduction to the “streambed”  on the energy budget is not a
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simple one. However, the net effect of this mechanism can, in the end, be fairly simply
portrayed for the purpose of predicting stream temperature.

For the purpose of the present discussion, a non-porous streambed  will be considered. The
results of this discussion will then be broadened to conditions where the stream and the bed
intermingle for several centimeters at their interface. When there is a non-porous interface
separating the two, the streambed  acts lie  semi-infinite solid. This configuration has been
extensively treated and described in most heat transfer texts [Arpaci, 1966; Kreith,  19731.
The important feature of interaction of the streambed with the stream or with the adjacent air
is that its surface is subjected to cyclic temperature variation, bath  diurnal variations and
annual variations. The expression for the response of the streambed  (or soil) as a function
of time, t, and depth below the surface, x, to cyclic variations in surface temperature of the
form [T(O,O)  - T(-,O)]  cosret  is given in the general form:

Tkt) - ‘U=-,O)
T(O.0)  - T(=,O) --ex{-($J”X} COS{Ol-(EYX} (14)

The thermal diffusivity, CY, for most non-conductors such as rocks and soil lies in the range

1~10~~  m*/s  to 8x10-7 m*/s  WcAdams,  1954; Kreith, 19731.  For annual variation in
surface temperature, the exponential term in Equation (14) indicates that the cyclic variation
in temperature at a depth of 5 m rarely exceeds 10% of the variation at the surface, except
for a solid rock streambed. It does not exceed 2% for most soils and gravels. Indeed, the
ground temperature at a depth of 5 m below the surface is nearly steady and constant at a
value near the annual mean air temperature [Smith and Lavis, 197.51,  approximately 8°C
(281°K) [Smith and Lavis, 1975; NOAA, 19851  for the Pacific Northwest.

The diurnal variations in surface temperature are faster than the annual variation so their
effect is felt only at shallower depths. At a depth of only 30 cm, Equation (14) indicates
that temperature variations are damped down to only 5% of the diurnal surface temperature
variation. This is very similar to other cyclic heat transfer situations [Gorog, 19821.  Heat
transferred to the bed during periods of the day when stream temperature is above the daily
average air temperature is transferred back to the stream during the periods when diurnal
variation brings the stream below the daily average air temperature. This has the effect of
dampening the diurnal stream temperature variations without affecting the daily average
stream  temperature. Effectively this causes the stream to act as if it is deeper and contains
more thermal inertia.
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Though the expression presented in Equation (14) is specifically for a non-porous
streambed,  because of the cyclic variation in temperature due to diurnal changes results in a
coupling of stream and bed, the same general conclusion can be drawn for loose or porous
streambeds. The first 30 cm or so below the initial interface. of stream and bed will act lie  a
thermal flywheel for diurnal variation. The temperature variations of the main flowing bcdy
of the stream will be damped by conduction and fluid exchange with the water below the
streambed  surface. One method of handling this effect while avoiding the cumbersome
formulation of Equation (14) is to assign a constant  temperature to the streambed and allow
heat transfer to occur between ir and the cyclicly varying stream over the course of the day.
This transfer is driven by the temperature difference between the stream and the bed
through an effective transfer coefficient, hsb.  In this way the stream transfers heat to the
bed when its temperature is above that of the bed and vise versa.

Selecting an appropriate value for both the effective streambed  temperaturc  and the effective
transfer coefficient must capture both the short term diurnal interaction as well as the longer
annual variations. Aside from the cyclic effects there is a net aansfer between the s&earn
and the deeper soil. Over the course of a year this transfer is also  cyclic, and therefore net
zero. However, over the usual periods of measurement from a few hours to a few months
there can be a net interaction The streambed  or soil at a depth of 5 m is at a nearly constant
temperature, near 8°C for the Pacific Northwest. Because this is substantially below the
average daily stream temperature for the summertime there is a net heat loss to the
streambed during this period. As will be shown below, this is quite a small term in the
energy budget.

The approach to selecting hh and the effective temperature is to first recognize that the daily
average surface temperature of the ground is nearly the same as for the air. The peak daily
average value occurs in the summertime. For the Pacific Northwest in the summertime the
average daily air temperature is approximately 18°C. The Equation (14) must be
differentiated  and multiplied by thermal conductivity to obtain an equation for heat flux:

which at peak  summer conditions (t=O)  and at the surface (x=0)  becomes:
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oq=k z In
0

{ T(O,O)  - T(m.0,) (16)

The net heat flux into the ground can be estimated by using the annual average and peak
values of air temperature and a typical value of soil thermal diffusivity, ~xIC-~ m2/s,  and
thermal conductivity, 0.75 W/m ‘C l?vkAdams.  1954; Kreitb,  19731:

q = 3.4 W/m2 (17)

This is quite a small  value compared to average daily clear sky solar radiation of 280 Wtmz,
for example. This effect is small  enough to be ignored in the energy budget equation.

‘The term  in tiont  of the temperature difference in Equation (16) is the effective heat transfer
coefficient, hsh.  For the cyclic diurnal variations, its vahre  using the property vahres  in the
example above is 6.7 W/m2  “C. The stream transfers heat to the bed through this effective
value. The driving potential is the temperature difference between the stream temperature
and the temperature about 30 cm below the surface. Using Equation (16) and the typical
values for average peaJr  summer temperature, 18’C  and the average annual temperature,
8”C,  the temperature at 30 cm is about 16“C,  or 2’C below the surface temperature. The
streambed heat transfer can then be approximated as the transfer through the transfer
coefficient, hsh, driven by a difference between the stream tempemtme  and a temperature
approximately 2’C  below the average daily air temperamm.  In equation form: ,

%b=hsb  (‘T,-2-T,) (18)

The Net Hear Flux

The net heat flux is just the sum of the individual heat flux terms:

gnet  = qsolar + qsky + qveg + qconv + qsb

S;roundwater  &

(19)

Groundwater enters the stream along its length. The quantity of groundwater will depend
on the time of year, geological factors, and the watershed area. The measure of
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groundwater inflow used here will be a flux term equal to the rate of inflow divided by the
stream top surface area. It is calculated from the actual groundwater inflow in a given
length of stream divided by the total top surface area of the stream for that length. The
symbol for the groundwater flux is G,,. This basis for specifying groundwater input is
strictly for convenience in formulating the energy budget equation.

In the example cases below the groundwater influx specified is approximately equivalent to
a 1% increase in the stream mass flow per kilometer of stream length for a 0.3 m deep
stream flowing with a velocity of 0.17 m/s.  The range covered in subsequent examples is
from 0.1% to 10% increase per kilometer of length.

THE ENERGY BUDGET FOR A STREAM ELEMENT

The energy balance for the stream can be written in several ways with control elements that
are stationary or that follow a specific mass of fluid. The control element chosen here
follows an initial fluid element and lets it expand in size as groundwater enters it. The
energy budget equation is:

d(M  hw) = M d&x) d(M)
dt -dt +hw d t-=qnetA+GWAhm+GeAhe (20)

Recognizing that the rate of change of mass of the element with respect to time is just the
the groundwater inflow  and the evaporation, this equation can be rewritten as:

d&w)-= onet A + Gg w A (hgw  - hw) + Ge A (he - hw)
dt M (21)

I
1 6

The mass of the element, M, is not constant in this expression if there is groundwater
intntsion  and evaporation. However, because the element mass and surface area appear as a
ratio in this expression, a simpliftcation  is possible. The mass and surface area of the
sneam  element are related by the expression:

M =pAD (22)

Using this and substituting common expressions for the enthalpy tetms  yields:



Ww)-= qnet + CR, Cw (Tgw - Tw) + Ge L
dt P Cw  D
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Two observations can be made from this equation. First, because the usual summertime
stream temperatures are well above the 8’C  (281°K) typical of groundwater, groundwater
influx can have an important depressing effect on stream  temperature. Second,  the most
important stream geometric characteristic which dictates its effective size  is the stream
depth.

FULL MODEL PREDICTED RESULTS

The energy budget expressed in Equation (23) can be easily programmed and solved for a
wide variety of conditions. Predicted results for tbree cases are shown in Figures 1 through
3. The basis for these calculations is given in Table I below. The three cases represent three
different stream sizes of depths: 0.1 m, 0.3 m, 1.0 m. The initial sueam  temperature was
arbitrarily specified at 5°C (278’K)  in order to show the time response of stream
temperature to external condition. Solar insolation was taken for a clear day in mid-July,
and the air temperature profile was prescribed as a simple cosine function based on actual
measured profiles at a specific site near Mt.  St. Helens for a mid-July day. It was selected
because of the wide fluctuations in air temperature at this site. Other values are given in the
table. The calculations were carded out for a ten day period. This means that the stream
element was exposed to the same environmental conditions for ten 24-hour periods in order
to see the cumulative effect of many hot days in a row.

TABLE I
Environmental Parameters for the ExamDIe  Case

Mean air temperature, OK
Air temperature fluctuations, “C
Daily average solar insolation, W/m2
Cloudiness, unitless
View factor water-to&y,  unitless
Air velocity, 4s
Water vapor in air, mbar
Stream depth, m
Groundwater influx,  kg/mLs
Groundwater temperature, OK

289°K  (16’C)
12

280
0

i::

O.l-0?3-1.0
0.0005

281%  (8’0



The results shown in these three figures have a particular pattern which is true for all  the
runs carried out with this model. The stream temperature rises in a cyclic fashion and
eventually establishes an equilibrium with the surrounding environment The time to rise to
this equilibrium is less than a day for small (i.e. shallow) streams, to several days for large
(i.e. deep) streams. After reaching equilibrium, the diurnal fluctuations are smaller for the
deep stream than for the shallow stream, and for all cases except streams shallower than
0.1 m, the diurnal stream temperature variations are less than the diurnal variations of the
air temperature. As well, at the equilibrium the daily m water temperature is very near
the daily m air temperature.

These results are not surprising. The energy loss from the stream due to evaporation and
sky radiation increases rapidly with stream temperature. Evaporation loss increases
exponentially with stream temperature. As the stream is heated by solar radiation and
convection, a stream temperature will always be reached where the energy losses will
balance the energy gain for the day. This is demonstrated for one equilibrium condition in
the bar graph of Figure 4. When the stream is being heated to the equilibrium as in the
early portions of Figures 1 and 2, the solar term dominates the energy budget, as found in
actual measurements [Brown, 1969; Brown and Krygier,  19701.

Most of the exchange terms involve the local air temperature so this temperature will be
very influential in determining the equilibrium stream temperature. The response of the
stream  temperature to external conditions such as diurnal air temperature fluctuations is
damped by the thermal inertia of the stream. Deeper streams have more thermal inertia so
they heat up to equihbrium  more slowly and fluctuate less at equilibrium.

The stream  temperature model has been applied over a wide range  of conditions to establish
the parametric influence of various environmental conditions on the predicted results for
equilibrium conditions. A small portion of the results are shown in Figure 5. This plot of
predicted daily mean w temperature versus the prescribed daily mean & temperature
resulted from changing the input variables through the ranges shown in Table II.
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TABLE II
Range of Variation of the Environmental Parameters for Figure 5

Mean air temperature, “C
Air temperature fluctuations, “C
Daily average solar insolation, W/m2
Cloudiness, unitless
View factor water-to&y,  unitless
Air velocity, m/s
Water vapor in air, mbar
Stream depth, m
Groundwater influx, kg/m2*s
Groundwater temperature, “C

Ta 8-l 624
Ti 8-12
&I 200-280

CF o.o-OS- 1.0
b/Sky 0.1-0.5-0.9

Va O.l-0X2.0
2 0.1-0.3-1.0 s-9-15

Ggw 0.0002-0.0005-0.002
Tgw 8

The pattern that emerges here is that the daily mean water temperature is always near the
mean air temperature under equilibrium conditions. At low temperatures the water is
somewhat above the air, and for high temperatures the water is usually below the air
temperature. Considering the broad range of input conditions, there is a relatively small
response of the daily average stream temperature at equilibrium to environmental conditions
other than the local mean air temperature. This merely indicates that the energy losses from
the stream change very rapidly with stream temperature so that large changes in the
environmental conditions listed in Tables I and II are compensated by relatively small
changes in mean stream temperature.  Environmental conditions affect the stream
temperature fluctuations more than the daily mean stream temperature. Because of the
interactions of several variables it is more difficult to establish the influence of any one of
them on the smeam temperature fluctuations from numerical results.

For any given set of environmental conditions there will always be some mean air
temperature for which the mean stream temperature and mean air temperature are equal.
This is demonstrated in the plot of the Tw versus ??a  shown in Figure 5 for the example
conditions. Also shown in this figure is that the slope of this curve is less than one. For a

wide variety of conditions the slope of the Tw versus Ta line is between 0.5 and 1.0. It
should also be noted that because the groundwater is at a temperature of only about 8’C
(281%) it tends to flatten the slope.

These model predictions could be used to predict the stream temperature for a watershed
system. However, the real utility of this type of model is in establishing the key physical
parameters important to stream heating and in identifying the influence of environmental
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conditions on the stream  temperature  fluctuations. This will bc the purpose of the  linearized
model developed below.

THE LINEARIZED STREAM HEATING MODEL

Many of the energy flux terms  are not linear in the value of stream temperature. However,
each can be linearized about a specific condition and the resulting equations are presented
below.

The sky and vegetation radiation terms can be linearized by algebraically expanding the
fourth power differences, recognizing that the absolute temperatures for the air and water
change by only a small  percentage, and that both are approximately equal to the daily
average air temperature. When this is done the radiation exchange with the sky becomes:

For the usual range of values for ~sky  between 0.78 and 0.85, this equation can be

simplified to the following with very little error:

q&y = ah &-sky  c Ti 3.7
4
GTa - Tw 1 (25)

The same procedure can be used for the radiation exchange with the ripazian  vegetation
with the result that:

qveg=crlw(l-F~rky)(J4~[Ta-Tw] (26)

2 0

qconv = hc Va - Tw) (27)



(-je=k, e,-  1.13x10-7  ,“.0653(Td { 1 + 0.0653  (Tw - &J}] (28)

qsb = hsb @a - 2 - Tw) (29)

Both  the  major  driving  forces  for  stream  heating,  solar  radiation  and air  temperature,  cycle
over  the  course  of a day and cause  the  stream  temperature  to cycle.  They can  each  be
expressed  as the  sum  of a steady  component  and a fluctuating  component.  The solar
radiation  becomes:

-
(

lt
Qolar = Qolar  + @solar  cos  43200  t + n 1 (30)

solar  = Id asw (1 - 0.7 CF)  hvs~ (31)

9’solar  = 1.7  Gsolar (32)
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The fluctuating  component  for  the  solar  radiation  is,  in  fact, the  half-wave amplitude,  as is
the  fluctuating  air  temperature  given  below  and the  resulting  water  temperature  fluctuations
presented  in  the  examples.



Air TemDeranue

The air temperature is represented as:

- ’
Ta=Ta+T,coS (33)

The Linearized Energy  Budper  Eauatiorg

The basic energy equation is the same, but using the linearized terms it can be rewritten in
the form:

d (Tw  - &) -
d t +U (Tw-Ta) =  S+Fcos

>

with:

alw a 2 (4 - 0.3  &sky) + hc

u = +
P G D

+ h& + Gew  C, + 7.38x10-9 L, ke exp[0.0653  TJ

P Cw D

%d-ir + ah F,sky  0 3.7 < &- 1 1s= +P cw D

(34)

(35)

2 2

+ L, b [ea - 1.13x10-7exp(0.0653  Ta)]  - 2 hsb + Gpw  C, (T,, - Ta

P Cw D

(36)



- 3.7
4
01-Y

F = L J

P Cw D

Physically, the term U is an effective overall energy transfer coefficient, S is the steady
component of the energy flux input, and F is the fluctuating component of the energy flux
input. Though each of these consists of several terms, they require only the ten basic
parameters listed in Table I to evaluate.

For reference, the linearized energy budget has been evaluated for the case of an 0.3 m
deep stream. The results from the linearized model and the full model  are shown in Figure
6. Despite the approximations used in linearizing and in characterizing solar radiation and
air temperature, the comparison is very good. Analytical solutions of Equation (34) are
available in many heat transfer texts [Arpaci, 19661.  The solutions indicate that after the
initial transient response has died out, the equilibrium values for the mean and fluctuating
components of stream temperature can be written:

(38)

In order to clarify the magnitude of the various items, numbers from the 0.3 m deep stream
example case have been used to evaluate the terms in the expressions:

u = 5.01 + 3.55 + 6.70 + 2.09 + 6.69 = l.glxlo-5
1.26~106

s = 133 - 41.0 - 50.5 - 13.4 - 16.7 = +o.9O5xlo-5
1.26~106

(40)

(41)

F = 226  + lo1  =2.&l&4
1.26~106
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so that:

Tw = Ta + (0.905x10-5)1.91x1o-5  = Ta+0.47T=  16.47T (43)

T’ = 2.60~10-~
w 131xs{w}  =  13J5xo.254  =  3.46”c w)

This value of Tw is very close to the actual value calculated by the full model of 17.YK.

The value for Tv, is also close to the full model value of 4.8’C.  Note in Equation (41) that

the solar input is balanced by sky radiation loss and evaporation. In Equation (42) however
the solar radiation fluctuation over the course of the day accounts for almost 60% of the
water temperature fluctuation.

LINEARIZED MODEL STREAM TEMPERATURE PREDICTIONS

The linearized model results compare well with the full model results for the example case,
and this is generally true. Comparisons of the predicted results from the two models are
shown in Figures 7 and 8 for the mean stream temperature and the fluctuating component
of the stream temperature. Figure 7 indicates very good agreement over a wide range of
conditions for the mean temperature. Not surprisingly the fluctuating component is not
quite as good but still very acceptable, particularly in light of the ease of evaluation of the
algebraic expressions compared to the numerical solution.

The effect of shading by riparian  vegetation is different than the effect of clouds. The view
factor Fwsky  appears in two terms in Equation (36): solar radiation and sky radiation. These
two terms are both directly affected by FWsky.  but they have opposite effects. The sky
radiation always reduces the impact of solar radiation on the daily mean stream temperature.
The net effect of changing the view of the stream for the sky from 90% to 10% is:

Tw = Ta + 3.6”C @ Fwky =0.9 (45)

2 4

‘iw  = Ta - 2.6T @ F,.,ey =O.l cw



The maximum difference in daily mean stream temperature between nearly complete
riparian coverage and almost no coverage is approximately 6.2”C.  This assumes, of course,
that all other conditions remain the same.

The first fraction on the RHS of Equation (39) accounts for the maximum possible stream
temperature fluctuations of the very smallest stream. The second fraction reduces this
maximum as stream size (depth) increases. The value of the first fraction in the example
case is 13.6’C.  This indicates that the maximum fluctuation of the stream temperature for
the very smallest streams would be slightly greater than the fluctuation in air temperature

which is 12’C.  In the expression for L the solar insolation is no longer reduced by the

sky radiation affects so that FWsb,  and therefore riparian vegetation, will have a stronger
impact on the fluctuating component of stream temperature.

Deeper streams will always have smaller fluctuations than smaller streams. The impact of
stream depth on the size of the stream temperature fluctuations is shown in Figure 9. Not
surprisingly, the deeper the stream the smaller the fluctuations.

DISCUSSION

A stream temperature model was developed specifically to examine the basic physics of
stream heating. The model was linearized in order to obtain algebraic expressions for the
basic components of stream temperature: the mean stream temperature and the stream
temperature fluctuations. Both of these components can be expressed in terms of algebraic
equations involving ten basic environmental parameters. This allows direct and simple
evaluation of both components once the environmental factors are specified. The algebraic
equations also allow simple evaluation of expected results of stream environment changes,
and provide correlating parameters for a very broad range of streams with disparate
environmental conditions. Some of the expected mends  have been displayed here, and the
magnitude of each term has been evaluated for one case.

Through the process of linearization and evaluation it becomes obvious that the local air
temperature is the single most important parameter influencing the  daily mean stream
temperature at equilibrium. It is also apparent that solar insolation is less important except
for its influence on local air temperature. Direct solar radiation to the stream surface has
relatively small impact on the m stream temperature at equilibrium. This is primarily

2 5



because of the very large increase in energy loss due to evaporation and sky radiation as
stream temperature increases. The real influence  of solar radiation is on the magnitude of
the stream temperature diurnal variations. For the case evaluated here the solar insolation
was responsible for about 60%  of the stream temperature variations. Even with constant
mean air temperature, the solar insolation will raise the maximum daily  stream temperature.

The intention of the current stream temperature model is to understand the physics of
steam  heating rather than to predict the temperature of a specific stream system. To
accomplish this the individual environmental parameters have been cast so they can be
manipulated individually to evaluate their infhrence.  In a real stream  situation any physical
change is likely  to change more than one of the environmental parameters. For example
removing the riparian vegetation from a stream will increase the view of the stream for the
sun and the sky, and directly affect F,sky- However, it is also likely that the local air
temperature, air velocity, and local relative humidity will  change. It would be mandatory to
properly adjust all three of these in the model to correctly evaluate the impact of removal of
riparian vegetation on stream temperature.

It is equally important to recognize that most of the exchange terms are based on local
values of each environmental parameter. It is particularly important to evaluate the air
temperature and the relative humidity in the immediate vicinity of the stream, The linearized
model clearly indicated the very dominant role of local air temperature on stream
temperature. The use of remote or approximate values for air temperature can be expected
to produce remote or approximate stream temperature predictions.

Though the air temperature and its fluctuations were treated as independent variables here,
it may be one of the most important results of this work that understanding the impact of
forest practices on local air temperature is a crucial step in understanding equilibrium stream
temperature. Solar radiation will only dominate the energy budget while  the stream is being
heated from groundwater temperature to equilibrium conditions.

In a companion paper, “KATE SULLIVAN”, a vast amount of stream temperature data
from a wide variety of streams is presented. The basic form of the presentation and the
correlating techniques employed follow from the results presented here. The data wilI  be
used to confirm the basic results of the model work.



CONCLUSIONS

The individual energy flux terms and the overall energy balance for a forest stream have
been modeled in a direct and simple manner. This model has been exercised over a range of
conditions to gather some insight into basic sneam heating physics. This model  was then
linearized in order to derive algebraic expressions for both the daily mean stream
temperature and the stream temperature fluctuations in terms of the basic environmental
parameters. Linearization of the stream heating model allows an analytical solution of the
governing differential equation for stream heating @h only very minor loss in predictive
accuracy. Based on the linearized model both the daily mean value and fluctuating
component of stream temperature can be evaluated with algebraic expressions involving
only ten important environmental parameters. Model results suggest several general
conclusions regarding the relationship of stream temperature to important environmental
parameters.

Sueam Deotb.  Stream depth is the most important geomeuic  parameter which characterizes
stream size for energy transfer purposes. Stream depth affects both the magnitude of the
stream temperature fluctuations and the response time of the stream to changes in
environmental condition. Streams of finite depth always show temperature flUCNatiOUS

which are smaller than the diurnal fluctuations in air temperature.

Air Temueratum. The daily mean stream temperature under equilibrium conditions is
always very near the daily mean air temperature. The linearized model result confirms that
the mean stream  temperature will always be very near the mean air temperature and that the
fluctuating stream temperature component will always be strongly influenced by the
fluctuating air temperature and solar insolation fluctuation. Other environmental parameters
have relatively little influence on mean stream temperature because the two major energy
loss terms, sky radiation and evaporation, depend so strongly on stream temperature.
Because of the dominant role of air temperatune  on stream temperature it is crucial to use the
local value of air temperature to evaluate stream heating; this is also true for local air
velocity and relative humidity.

Riuarian  Vegetation, Removal of riparian vegetation has relatively modest impact on the
mean stream temperature because the energy gain due to increased solar radiation influx is
partially offset by increased energy loss by radiation to the sky. The fluctuating stream
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temperature component will be more strongly influenced by the removal of riparian
vegetation because of the effect of solar  insolation fluctuation.

Groundwater. Since the usual summertime stream temperatures are well above the 8°C
typical of groundwater, groundwater influx can have an important depressing effect on
stream temperature. This effect will depend  on the rate  of groundwater influx relative to the
volume of flow in the stream,  and on the groundwater temperature compared to the mean
stream temperature.
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NOMENCLATURE

A = stream top surface area, m2
a,b = constants
BF = blocking factor of solar radiation by riparian  vegetation, a fraction (see Equation 2)
CF = cloudiness factor, 0 if clear and 1 if completely clouded over, a fraction
Cw  = heat capacity of water, 4186 J&g “C)

D = stream average depth, m
d = differential operator
ea = partial pressure of water vapor in air, mbar
F = fluctuating energy flux factor, “c/s
Fwsky = view factor of the stream water for the sky, a fraction
Ge = evaporative mass flux, kg/(m2  s)
G,  = ground water influx per unit of stream surface area, kg/(m2  s)
h = convective heat transfer coefficient, W/(m2  “c)

h, = enthalpy of the evaporated water, J/kg
h, = enthalpy of the groundwater, J/kg
hsb = convective heat nansfer  coefficient for  the Streambed,  W/(m2  “C)
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hw  = enthalpy of the stream water, J/kg
Id = average daily solar insolation, W/m2
k = streambed thermal conductivity, W/(m  “C)
b = convective mass transfer coefficienk  kg/(m2*s*mbar)

L+  = latent heat of vaporization of water, 2440x1@  J/kg
1 = stream element length, m
M = stream element mass, kg
P(Tw) = saturation pressure of water vapor at Tw. mbar
qmnv = heat flux due to convection, W/m2
qnet  = net heat flux, W/m2
q,$ = streambed heat flux, W/m2
qsky  = heat flux due to sky radiation, W/m2
qsolar  = heat flux due to solar radiation, W/m2
qveg = heat flux due to vegetation radiation, W/m2
S = steady energy flux factor in, “c/s
t=time,s
T(x,t)  = streambed temperature at depth x and time t, OK
Ta = air temperature, OK
Tgw = ground water temperature, OK
TODF = time of day factor for solar radiation, dimensionless (see Equation 2)
Tw = stream water temperature, OK
U = energy transfer coefficient factor, s-1
Va = air velocity, m/s
Vs = stream velocity, m/s
x = depth below streambed surface, m
a = thermal diffusivity of the streambed,  m*/s
atw  = absorptivity of the stream for longwave radiation, unitless
asw = effective absorptivity of the stream for shortwave radiation, witless

&w  = water emissivity = absorptivity, a fraction
p = water density, 1000 kg/m3
(T = Stefan-Boltzmann’s  constant = 5.68x1@8  W/(m2  ‘K4)
‘u = kinematic viscosity of water, m*/s
0 = angular frequency  of variations, radians/s

- = indicates daily average value
’ = indicates fluctuating value about the average
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Figure I- Air and predicted stream water temperature

over a IO-day period for a stream of 0. I m depth.
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Figure 2 - Air and predicted stream water temperature

over a 1 O-day period for a stream of 0.3 m depth.
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Figure 3- Air and predicted stream water temperature
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Figure 4 - Daily average heat flux to the stream due
to the various energy transfer modes.
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model and the linearized model.



30

20

10

0 c

Line of 1 :l correspondence

,

0 10 20 30

Full Model Mean Stream Temperature, “C

Figure 7 - Plot of the predicted mean stream temperature

for the linearized model versus that predicted by the full
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for the linearized model versus that predicted by the full model
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