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EXECUTIVE SUMMARY

Project Purpose

The need for testing and improving GIS-based slope stability models, for use in forest

management and forest-practices regulations, has been identified by the TimberlFishNVildlife

(T/F&V) Cooperative Monitoring, Evaluation, and Research (CMER) Committee and the newly

released Forests and Fish Report to the Washington Forest Practices Board (WFPB) and the

Governor’s Salmon Recovery OfFice  (USDI Fish and Wildlife Service et al., 1999). The original

T/F/W  agreement (1987, p. 31) called for I’...  moving toward a hazard zonation mapping system

to better identify areas of instability”, and efforts began soon thereafter to design mapping

systems, both manual and GIS-based, for screening shallow landslides. Likewise, the Forests

and Fish Report has called for “a project to identify the best available topo/geographic model to

flag landforms that have significant potential to initiate shallow rapid landslides” (p,  37),  in

anticipation of the completion of the study described herein.

Over the past eight years, CMER has funded or partially funded research to develop

GIS-based models. These models, however, have not been tested rigorously or adapted for

statewide application  to management and regulation of commercial forest lands in Washington.

Consequently, the CMER  Committee recommended, and the T/F/W Policy Committee

approved, Project IO (“Erosion Effects from Forest Practices”) for the 1997-99 biennium, the

primary intents of which were to:

(1) evaluate the performance of GIS-based slope-stability models that are readily available and

have been developed with support from T/F/W and its cooperators;

(2) select one or more models that meet stated criteria for scientific accuracy, technical

accessibility, and applicability to forest management and regulation in Washington; and,

(3) further refine the selected model(s) and make recommendations to the T/F/W community
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regarding its/their use as a screening tool, particularly where regulatory watershed

analyses or landslide inventories have not been completed.

Model implementation would be promoted by making software and documentation available to

all T/F/W  cooperators, or by creating a publicly accessed, regional landslide screen to replace

the current WDNR-GIS slope-stability layer.

In May 1998, we contracted with the CMER Committee and the Washington Forest

Protection Association (WFPA) to carry out Project 10. This technical report and accompanying

recommendations describe the methods, results, and conclusions of our year-long analysis.

We thank the T/F/W  group, WFPA, and Washington Department of Natural Resources (WDNR)

for their generous support of this project.

During the course of this study, our focus expanded from evaluating models for use in

regulatory watershed analyses and routine forest management, to include an assessment of

their potential as statewide landslide-screening tools. This shift was driven primarily by the

Forestry Module negotiations and the resulting commitments of the Forests and Fish Report to

promote the development of a statewide screen. Hence, we provide recommendations for

model use at the local and regional scales. This project has focused on western Washington,

due primarily to time constraints. Consequently, we are developing a similar test for

watersheds in each of the distinct geomorphic provinces in eastern Washington, as groundwork

for creating a statewide screen of shallow landsliding. This test should help determine whether

any of these GIS-based models can accommodate the geology and climatic regimes east of the

Cascades Range.

Summary of Study Methods and Report Conclusions

We evaluated three shallow-landslide predictive methods that have been used
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previously in Washington forest management and regulation: the current WDNR-GIS slope- ’

stability screen (referred to in this report as the SOILS screen; tested at the request of CMER

Committee members); the SMORPH or DNR-SL model (Shaw and Johnson, 1995); and the

SHALSTAB model (Montgomery and Dietrich. 1994). We originally proposed to test the WHPM

model (Wu and Abdel-Latif, 1995, 1997); however, this model has not been fully developed and

programmed by the authors and, hence, was unavailable during the course of this study. Other

published models (e.g., Wu and Sidle, 1995; Pack et al., 1998) also were not tested fully due to

availability and software-development issues.

We tested the three selected models in eight watersheds (i.e., nine Watershed

Administrative Units (WAUs)  and portions of four others), representing the major geomorphic

provinces of westem  Washington (see Figure 1 in the Technical Report) and incorporating 2524

known, existing shallow landslides. The test was conducted by executing the model programs,

creating GIS covers from model results, comparing them statistically with landslide inventories

and hazard-zonation maps produced for this project or as products of regulatory watershed

analyses, and verifying model predictive accuracy in the field.

For maximum test accuracy, we found that we had to verify and update most of the

landslide inventories in the field, and make corrections or additions to the digital databases (i.e.,

we encountered problems with the watershed-analysis GIS products). We also modified the

SHALSTAB program, with assistance from one of the authors and staff, such that it functioned

correctly on the WDNR UNIX computer system. In addition, we needed to create a method for

converting SHALSTAB model output, given as critical rainfall amounts necessary to initiate

landslides (in mm/daiy),  to management criteria (i.e., low, moderate, and high “hazard”

potentials) in order to compare the model results with those of the SOILS screen and SMORPH

model. The latter two models yield results in terms of management criteria, as defined by
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WFPB regulations. While conducting this study, we developed some additional

documentation and computer help tools that will improve the “user-friendliness” of the SMORPH

and SHALSTAB models. This documentation, as well as the algorithm for converting

SHALSTAB output, are available by obtaining copies of the computer programs from the

WDNR.

Based on statistical comparisons of model results and existing landslide data, we have

concluded the following regarding the management applicability of these models:

(1) The SMORPH model generated spatial predictions of shallow landslides that correlated

most closely with the pattern of known, existing landslides (i.e., landslide inventory

databases) and the landslide hazard-potential maps (e.g., Mass-Wasting Map Unit

maps from regulatory watershed analysis). This model correctly predicted 97% of the

total existing landslides, compared with 92% for the SHALSTAB model and 68% for the

SOILS screen. Compared with the landslide hazard-potential maps, the SHALSTAB

model over-predicted by an average 7% the area considered to be “high hazard”,

whereas the SMORPH model similarly over-predicted by an average 3%. The

SMORPH model also performed substantially better than the other models in the least

appropriate terrain for GIS-based model applications (Le.,  continental glaciated basins).

(2) Using the landslide databases as a measure, the difference in predictive capability of the

SMORPH and SHALSTAB models appears to be marginally significant statistically,

whereas the difference between either of these models and the SOILS screen is very

significant. Hence, SMORPH and SHALSTAB agree fairly well with observed landslide

distributions and either conceivably could be developed to produce a regional or

statewide GIS cover of shallow landslide potential, contingent on their calibration needs.

(3) The SHALSTAB model is less readily applicable in the current management decision-
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making framework because it contains no mechanism for converting model output to

management criteria (i.e., low, moderate, high “hazard” potential). Hence, using this

model in a watershed-analysis or regulatory context (e.g., creating a statewide cover)

would require that the model authors create an algorithm or verify that the one we

created is acceptable. Our conversion algorithm was designed to yield the most

conservative estimate of slope instability and reproduce most closely the spatial

distribution of existing landslides, so we believe that it is a viable approach to solving

this application problem. We estimate that it would take the model authors at least three

months of concerted effort to make these and other desirable model modifications (e.g.,

addressing model calibration issues on a statewide level).

(4) The SOILS screen is the least preferable option for management applications because of its

comparative inaccuracy, the inability of the user to calibrate model input variables to

site-specific physical conditions, and the large gaps in geographic coverage due to lack

of comprehensive, digital soils-survey data The SOILS screen is relatively more “user-

friendly” than the other models because it is delivered to the user as is  pre-compiled GIS

cover. Contingent on further testing in eastern Washington, either SHALSTAB  or

SMORPH programs could be executed to yield a statewide cover that would alleviate

the need for individual users to run the model..  A new cover could be made available in

the public domain by the WDNR.

(5) The SHALSTAB model contains more input variables than SMORPH and, consequently,

has the poteritial  for producing relatively more model errors associated with using input

values that are unrepresentative of the study area. The soil-property and hydrology

input variables are assigned constant values in the model. Few published methods exist

for determinirig  appropriate constant values for soil properties that can vary considerably
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in space and time. Collecting sufficient data in the fields  also can be problematic.

Reasonable values potentially can be back-calculated by running the model with a range

of possible values and choosing ones that yield landslide predictions most comparable

with existing landslide databases. This approach might be less labor-intensive than field

sampling but requires reliable landslide inventories in a sufficient number of

representative watersheds that the calibrated values can be extrapolated to basins

without inventories. This calibration might hinder the speedy development of a

statewide GIS cover and could inhibit the use of this model in watersheds with no viable

analogs (e.g., geomorphically similar watersheds with completed inventories).

(6) The SMORPH model contains relatively fewer input variables (i.e., management criteria for

different combinations of hillslope gradient and curvature), relying on the assumption

that topographic factors primarily drive landslide initiation. Gradient threshold values

corresponding to each criterion (i.e., low, moderate, high “hazard”) are set using existing

landslide inventories and/or hazard-zonation maps from geomorphically similar

watersheds. Hence, this model also requires calibration and suffers correspondingly

when no viable analogs exist. We found that the SMORPH model is relatively less

sensitive to variations in the gradient thresholds than SHALSTAB is to variations in soil-

property values (i.e., magnitudes of the estimated soil cohesion and internal friction

angles). As a result, SMORPH likely can accommodate somewhat greater error in the

choice of input values than SHALSTAB. In addition, gradient data are more readily

accessible than soil-property information; the former can be derived from landslide

inventories and topographic or DEM maps, whereas the latter are obtained from field

measurements or from soil surveys and geoengineering literature.

(7) The SMORPH model, in its present form, cannot be adjusted to include site-specific soils
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and hydrology data. Hence, the model might not function as well in regions where

topographic factors are secondary to other hillslope processes. The same is true of

SHALSTAB in its present form because it also assumes topographic forcing of

landslides. Alternatively, the SHALSTAB model contains placeholders for algorithms

that treat variability of soil properties (i.e., substituting computational routines for the

constants) and, hence, eventually could prove to be more robust and versatile when

such algorithms are added. With respect to western Washington, the comparatively

better predictive capability of the SMORPH model suggests that including algorithms for

soil and hydrologic factors might not be as critical as modeling the fine-scale variations

in topograph:y.  This result also implies that, for western Washington, the values of input

variables required in the SHALSTAB model might be adequately represented by default

values currently set in the computer program.

(8) The SMORPH model runs approximately 80% faster than SHALSTAB on a computer

workstation (e.g., WDNR UNIX system), which might be important to managers with

limited computer resources and large data requirements. SMORPH also requires about

five times les#s  data-storage volume than SHALSTAB and several times less storage

volume than the existing SOILS screen.

(9) The SHALSTAB model requires relatively more training to instruct users on executing model

programs an’d  interpreting results. The assistance of technical specialists also might be

needed more frequently than with other models, to calibrate input variables and interpret

model results, particularly if no uniform method exists for converting model output to

management criteria.

(10) Both SHALSTAB and SMORPH perform significantly better using 10-m. versus 30-m,

resolution DE.M  data. Hence, the finer-resolution data should be used wherever
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possible. Computer programs for both models can be run using default values of the

input variables, if time and/or budget precludes more lengthy calibration efforts, although

the model results vary accordingly.

Recommendations for Model Adoption as a Landslide Screening Tool

Based on the conclusions presented in this summary and the technical report, we offer

the following options for selecting a preferred model as a screening tool for shallow landslides.

As summarized previously, the SOILS screen was determined to be the least preferable based

on its predictive capability and, hence, is not offered here as an option. These

recommendations are the same regardless of whether the model is employed at a watershed

scale (e.g., for forest-practices-application reviews, timber-harvest planning, and preliminary

hazard-zonation mapping) or at a regional scale (e.g., for creating a statewide or regional GIS

cover).

OPTION 1: Choose the SMORPH model as the preferred screening tool.

The advantages of this option are that the SMORPH model performs slightly better than

the current version of the SHALSTAB model and yields results that are consistent with

observed landslide data. Its output is given in terms of management criteria (i.e., low,

moderate, and high “hazard” potential) that are commensurate with the regulatory

definitions and management decision-making process. SMORPH requires relatively

less calibration, with readily available input data. This model could be incorporated with

other model algorithms that address additional key factors known to influence

landsliding (e.g., soil properties). The program runs substantially faster, requires less

storage space, and can be implemented with less training and technical assistance.
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This model has been used by a variety of private, state, and federal entities in the

Pacific Northwest to create preliminar,  screens of landslide potential. It can be readily

implemented, although additional testing should be conducted in eastern Washington to

assure that It performs accurately in terrain less comparable to watersheds analyzed on

the west side. We estimate that a statewide GIS cover could be developed within a few

months in western Washington and in about nine months for eastern Washington.

OPTION 2: Choose the SHALSTAB model as the preferred screening tool.

The advantages of this option are that the SHALSTAB model performs nearly as well as

the SMORPH  model and yields results that are consistent with observed landslide

inventories, if our algorithm is used to convert output data to management criteria. This

model potentially offers rnore versatility in terrains where topographic controls are

confounded Iby  spatial and temporal variations in soil and hydrologic variables, although

algorithms to address such variability have not been made available. The SHALSTAB

model could be adapted for management and regulatory use if the output conversion

algorithm used in this study were refined, replaced, or corroborated by the model

authors. Whereas using the model in the current regulatory arena would require

establishing management  criteria, its use by analysts in watershed analysis would not

necessarily depend on these criteria, given that the standard output (i.e., critical rainfall

values) can be interpreted by scientific specialists. We expect that model modifications

(e.g., refining management criteria) would take a number of months and potentially

require funding of the authors to complete. The model requires a fair amount of

calibrating with existing landslide databases or soil and precipitation data. This test,

however, suggests that using the default values of the input variables is reasonable for
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western Washington terrains similar to those tested in this study. Although the model ’

program is relatively less time- and storage- efficient, it nevertheless could be run,

perhaps in a series of smaller geographic areas, to create a regional or statewide cover.

This model requires relatively more training and assistance from technical specialists,

especially in calibrating input variables and interpreting results. The SHALSTAB model

or its variations have been used by several private, federal, and academic entities to

produce GIS covers of landslide potential in its native units of measure (i.e., to our

knowledge, no uniform method exists for interpreting results in a management context).

It could be used to build a statewide GIS cover, pending refinement of management

criteria and further testing in eastern Washington. We estimate that it might take about

one year to develop a statewide cover, using the management criteria presented in this

study, and potentially longer if other criteria need to be developed. Model modifications

would be subject to funding and availability of the model authors, which could influence

the completion of a statewide cover by December 2000 (i.e., anticipated deadline for

implementation of the Forests and Fish Report).

OPTION 3: Choose the SMORPH model as an interim tool while the SHALSTAB model is

being further developed and tested.

This option accommodates the needs of implementing a reliable statewide GIS cover by

December 2000, while allowing for further development and testing of the SHALSTAB

model. The SHALSTAB model is more sophisticated, although in its current version

(i.e., with variables held constant), it is reduced to its most essential element (i.e., a

topographic analysis). Hence, there currently is little functional difference between the

current SMORPH and SHALSTAB models. This option basically takes care of the
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present needs while exploring potential advantages of a more complex model. ~The

disadvantage of this option would be the time and money spent developing two GIS

coverages. ISwitching  from one model to the other in mid-stream, however, would not

necessarily affect users because one coverage could be substituted for another, as long

as the management criteria were defined similarly.

OPTION 4: Choose the SMORPH  model as an interim tool while other promising models are

being refined.

This option is similar to Option 3, although SHALSTAB would be replaced in favor of one

of several other promising, GIS-based models. The advantages of these models are

summarized in the Technical Report. One such method, currently being developed and

tested by ths!  USDA Forest Service and its cooperators in Oregon, couples a variation of

the SHALSTAB model with a debris-flow-runout algorithm, to assess not only the spatial

distribution of predicted shallow landslides but the “deliverability” of landslide materials

to downstrealm  areas with sensitive public resources (D. Miller, Earth Systems Institute,

pers. comm.).  Hence, this option considers the possibility that more advanced tools

would be available in the near future.

We have been asked by members of the CMER  Committee to recommend a preferred

option. We have selected Option ‘I. The deciding factors for us were the slightly greater

predictive capability of SMORPH,  despite the conceptual simplicity of the model, and the

immediate accessibility of the operating program to users with a basic knowledge of GIS and

mass-wasting mapping techniques (i.e., it does not require any modifications to be

implemented). In addition, this model contains fewer variables that need to be calibrated for the
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watershed of interest, it runs faster, and it yields output in terms of decision-making criteria that

currently are being used in the Washington forest-management arena.

We recognize, however, that a GIS screen built with one model could be replaced

relatively easily with another, as science and technology advance and better methods are

developed (i.e., “adaptive management” in the GIS world). Hence, Option 3 runs a close

second, in our estimation. We strongly support the concept of making both models available

and implementable, given that each offers some important potential advantages.

Regardless of which model is chosen, we recommend that both SMORPH and

SHALSTAB be simultaneously tested and refined for use in eastern Washington, prior to

implementing a statewide GIS cover. The possibility exists that one model could perform

significantly better than the other in certain types of terrain. To our knowledge, neither model

has been analyzed in terms of its applicability to eastern Washington watersheds. Testing both

models simultaneously would not cause delay in creating a statewide coverage because the

requisite diagnostic test methods have been established as part of this project.
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TECHNICAL. REPORT

Comparison of G&based IWlodels  of Shallow Landsliding for Application to Watershed
Management

Susan C. Shaw and Laura M: Vaugeois
Washington Department of Natural Resources

Forest Practices Division
P.O. Box 47012

Olympia, WA. 98504-7012

I., 0 lntroductioin

Land managers and regulators in the Pacific Northwest historically have possessed

limited means for evaluating landslide potential where land-management activities are

proposed. Existing information on site characteristics and failure potential typically has been

confined to small geographic areas (e.g., 20 km* or less) in which landslide inventories,

geomorphic research, or serni-empirical stability analyses have been conducted. More

recently, private landowners and natural-resource agencies in Washington State have initiated

a regulatory form of watershed ianalysis  (Washington Forest Practices Board, 1995) for specific

landscape units (i.e., Watershecl Administrative Units (WAUs),  usually less than 200 km2  or 78

mi* in size), in which landslide inventories are developed largely with the aid of aerial

photographs and limited field reconnaissance. Landslide assessments in only about 60 of the

764 Watershed Administrative Units, however, have been finalized and approved by the state

during the last seven years (Washington Department of Natural Resources (WDNR), 1999).

Furthermore, incomplete and often imprecisely mapped state soil surveys and their slope-failure

ratings still constitute the main source of information used by state regulatory foresters to

evaluate management proposals in areas outside of those where reliable landslide
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assessments have been performed.

In recognition of these and other management needs for improved methods of

identifying landslide sites in Washington State, the Washington Forest Practices Board (WFPB)

and Governor’s Salmon Recovery Office recently adopted new measures for forest-

management activities that include the use of a GIS (Geographic Information System) -based

topographic model as a statewide screen for predicting potential unstable slopes (USDI Fish

and Wildlife Service et al., 1999). GIS-driven models, using digital elevation model (DEM) data,

typically combine empirical and theoretical methods for evaluating the relative role of

topographic control (e.g., gradient and slope form) on initiating shallow landslides (e.g.,

Montgomery and Dietrich, 1994; Shaw and Johnson, 1995; Wu and Sidle, 1995; Wu and Abdel-

Latif, 1997; Pack et al. 1998; D. Miller, Earth Systems institute, pers. comm.).  Depending on

the model used, output can vary from spatial distributions of steady-state rainfall predicted to

cause slope instability (e.g., Montgomery and Dietrich, 1994),  to landslide-hazard potential

based on factors of safety (e.g., Wu and Abdel-Latif,  1997),  to landslide-hazard rankings based

on management criteria defined by the WFPB (e.g., Shaw and Johnson, 1995). These maps

can be useful to managers for screening potential landslide areas and determining where land-

use or habitat-restoration activities should be concentrated, to regulators as a replacement to

the soil surveys for assigning forest..practices  class designations (i.e., determining whether

environmental checklists or impact statements are required), and to analysts for developing

preliminary hazard-zonation maps that reflect initial hypotheses regarding the location and

density of shallow landslides, Isolated tests of GIS-based models in the Pacific Northwest have

suggested that preliminary landslide-failure or hazard-zonations maps can provide more

accurate slope-stability information than customarily can be interpreted from topographic,

geologic, or soil maps alone (e.g., Shaw and Johnson, 1995; Montgomery et al., 1998).
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In this paper, we present the results of a comparative test of GE-based models of

shallow landsliding for use in a management context. This test was conducted under contract

to the Washington TimberlFishiWildlife  (T/F/W) Program (i.e., a cooperative group of

regulatory, tribal, environmental, and industrial sponsors who collectively makes

recommendations to the WFPB on matters related to forest management; T/F/W, 1992) and

Washington Forest Protection Association (WFPA), as a precursor to developing the statewide

slope-stability screen required by the WFPB. For the purposes of comparison, we use data on

existing and potential shallow landslide sites from eight watersheds in western Washington (i.e.,

west of the Cascades Range crest) to examine the ability of each model to predict the spatial

distribution of shallow landslides. A similar test currently is being developed for watersheds in

each of the distinct geomorphic provinces in eastern Washington, as groundwork for creating a

statewide screen of :shallow  landsliding. In addition to evaluating method accuracy and

limitations, we discuss management applicability and several technical criteria important in

making models accessible to natural-resource managers and technicians.

2.0 Description of Test Models

Three GIS-driven models have been selected for this evaluation, based on their current

availability, potential for adaptation to management decision-making, and/or use by T/F/W

cooperators in field applications or previous tests of model performance. They are the current

statewide soil-stability screen, maintained by the WDNR and herein labeled SOILS; the shallow

landslide model of Montgomery and Dietrich (1994),  nicknamed SHALSTAB by its authors; and

the shallow landslide model of Shaw and Johnson (1995)  herein referred to as SMORPH.

The three sel’ected  models have a number of elements in common. They use

geographic irrformation systems (GE) to couple DEM data with assumptions regarding
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topographic attributes that influence slope destabilization and with algorithms for calculating

slope stability. Whereas the SHALSTAB and SMORPH models assume that topographic relief

(i.e., hillslope gradient) and form (i.e., slope curvature) are the principal driving factors in

promoting shallow landslides, the SOILS screen assumes that only gradient is a critical

variable. These assumptions derive from previous studies suggesting that shallow landslides

occur most often above a threshold gradient and in topographic convergences  where shallow

subsurface flow concentrates, such as hollows and channelized depressions, with consequent

effects on soil moisture and strength (e.g., Dietrich  and Dunne, 1978; Swanson et al., 1981;

Swanson and Fredriksen, 1982; Sidle et al., 1985; Montgomery and Dietrich, 1994). This

simplifying assumption permits a number of key slope-stability factors to be treated implicitly,

including substrate type, bedrock structure, rainfall duration and intensity, soil depth, soil

conductivity and strength, plant transpiration, root strength, and subsurface drainage properties.

In addition, each model is limited similarly by the accuracy of the DEM data; that is,

these models are only as good as the DEMs  on which they are based. Much of western

Washington is mapped with DEMs  at a IO-meter resolution. For regions in which DEMs  are

available only on a 30-meter grid, however, all models suffer correspondingly in their precision

and accuracy, as discussed in section 3.2 of this paper.

The three model differ primarily in the sophistication with which independent physical

parameters affecting slope stability are addressed. The SOILS screen relies on hillslope

gradient and soil type to rate slope-stability potential (WDNR, 1988). The SMORPH model

explicitly treats gradient and slope curvature, while the SHALSTAB model treats these

topographic attributes as well as several key soil physical and hydrological properties. From

the standpoint of practical application, there are advantages and disadvantages to each

16



approach. Simpler models in which key influencingfactors are treated implicitly can be

employed readily (i,,e.,  with little to no data collection) and for larger geographic areas. The

level of site-specific: accuracy, however, might be reduced by assuming static or invariant

hydrologic and geomorphic conditions, and by extrapolating local data on soil and hydrologic

properties to the basin or regional scale. The advantage of explicitly treating parameters such

as rainfall, subsurface hydrology, and soil properties is that the model might identify patterns of

potentially unstable ground at a higher resolution. Consequently, such models are useful for

predicting site conditions in the local area for which the input data apply. Conversely,

employing local data might limit the ability of the model to predict accurately the spatial

distribution of unstable slopes at a landscape scale. This approach also requires considerably

more data collection in the field. Some factors, for example subsurface hydrologic and soil

strength properties, might be very difficult to analyze and measure due to their spatial and

temporal variations and their complex physical interactions.

The following paper sections summarize the salient features of the three test methods,

in order of relative :sophistication,  and current knowledge of the authors regarding their

application to forest management.

2.1 SOILS scrfien

This GIS cover, crested by WNDR staff in 1988, expresses for each DIEM  cell, the

relative potential for slope destabilization (i.e., low, medium, high, very high potential for shallow

landsliding). It is based on the state soil survey classifications of soil type as stable, unstable,

or very unstable (WDNR, 1984.)  and differentiation between steeper slopes (30% to 65%) and

less steep slopes (less than 30%). For example, soil mapping units are rated as having low

potential if they are classed as stable soils and fall on hillslopes with maximum gradients of
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30%. Soil mapping units are assigned a very high mass-wasting potential if they are classed as

unstable soils and fall on hillslopes greater than 65% (Table 1).

The SOILS screen was built as a GIS cover for Washington State in 1988 and has been

used since that time in a variety of management contexts, including timber harvest planning by

private landowners and state-land managers. The SOILS screen remains the primary database

used by state regulators in evaluating the slope-stability potential of areas for which forest

practices have been proposed. It is available in the public domain on the WDNR-GIS system.

2.2 SMORPH model

The SMORPH model outputs, for each DEM cell, the relative potential for shallow

landsliding in terms of hazard ratings of low, moderate, and high (Shaw and Johnson, 1995).

This model assumes that hillslope gradient and form are the primary driving factors for shallow

landslides and that other critical influencing factors are treated implicitly by calibrating the model

with observed landslide densities. For example, it assumes that the greatest density of

landslides occurs on steeper, more convergent slopes; hence, a high hazard rating is given to

slope segments with the largest area of unstable ground per unit basin area. The model

combines an analysis of digital elevation models with an empirical algorithm that expresses

stability classes on the basis of measured landslide densities, as obtained from mass-wasting

inventories in terrain with similar geologic, climatic, hydrologic, and vegetative regimes.

Required model inputs are DEM data and a histogram of slope gradient versus density of

shallow landsliding for the geographic area of interest. The model is used most effectively to

extrapolate from areas with mapped landslides to those with little or no landslide data.

A modified version of the Arc/Info””  GRID curvature tool (Environmental Systems

Research Institute (ESRI), 1992) is used to evaluate slope gradient and form (planar, concave,
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convex), and a slope-morphology matrix is formed by the union of gradient and curvature

(Table 2). This tool ~calculates  the curvature of a surface at each cell center of a DEM grid, by

evaluating hillslope gradient, aspect, pianform curvature (i.e., measured transverse to slope

direction and influences subsurface flow concentration or dispersal), and profile curvature (i.e.,

measured normal to slope direction and governs flow acceleration and deceleration). The

mathematical derivation of curvature used in the ESRI package is developed by Zevenbergen

and Thorne (1987),  in which curvature is given as the divergence of the gradient, or the

LaPlacian  of the topographic surface, Z, as described by a fourth-order polynomial of the form:

Curvature = V’Z  = V2(Ax2y”  + Bx*y + Cxy*  + Dx’  + Ey’ + Fxy + Gx + Hy + I), PI

The 9 elevations of a 3x3 matrix of surface cells are used to calculate parameters A through I.

Matrix elements are assigned management hazard calls of low, moderate, and high based on

criteria defined in tha landslide inventory used to calibrate the model (e.g., hazard ratings

assigned by the ana;iyst during watershed analysis). Hence, model output comprises a

preliminary hazard-zonation map, with DEM-scale resolution, that can be used in management

decision-making or as a tool for planning a thorough field investigation of landslides.

This model was created specifically as a preliminary screening tool for field foresters

and managers to ust? in landscape and timber-sale planning (Hoh Tribe and WDNR, 1993). It

has been tested fairly extensively on the Olympic Peninsula (Shaw and Johnson, 1995) and

less rigorously by other T/FNV  cooperators elsewhere in the state. This model also was

employed in an economic analysis of the habitat conservation plan for state-managed lands in

western Washington (WDNR et al., 1997),  to estimate the percentage of watershed areas that

could be classified a!s  having potentially unstable ground. Several model versions also have

been distributed to government agencies and private timber companies in five western states;

to date, however, no test results have been reported in a statistically meaningful manner
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SMORPH is available to the,public  from the WDNR:

2.3 SHALSTAB model

The SHALSTAB model outputs, for each DEM cell, the relative potential for shallow

landsliding in terms of steady-state rainfall required to fully saturate the soil mass (Montgomery

and Dietrich, 1994). It couples DEM data and a planar infinite-slope stability model with a

hydrologic model (TOPOG; O’Loughlin,  1986) that predicts near-surface throughflow in

topographic elements identified by the intersection of topographic contours. Critical rainfall, Q,,

necessary to saturate soils and initiate soil movement is expressed as:

Q, = Tsin8  (a/b)” [c’(p,gz  co&  tan@)-’  + (p&,)(1-  ta&/tan@)] PI

where T is the depth-integrated soil transmissivity, 8 is the local slope, a is the upslope

contributing area, b is the slope length across which subsurface flow is accounted for, c’ is the

effective soil cohesion as governed by root strength, p, is the bulk density of water, g is

gravitational acceleration, z is soil thickness, @  is the internal angle of friction of the soil, and ps

is the bulk density of the soil (see Montgomery et al., 1998; their equation 5a).

This model calculates a numerical value of Q, required to cause landsliding for each

DEM cell. Analogous to the factor of safety, Q, values are assigned a slope-stability risk factor

(i.e., unconditionally stable, unstable, stable, and unconditionally stable; Table 3). DEM cells

are classified as unconditionally stable when they occupy fully saturated soils on slopes less

than some value that is dependent on the soil friction angle and bulk density specified in the

model (e.g., @I  = 33”,  p, = 2000 kg/m3  in model tests described in Montgomery et al., 1998):

tan8 < tan@  [I - (pJp,)] Conversely, DEM cells are designated unconditionally unstable when

soils are dry and slopes are greater than the gradient threshold value: tan8 > tan@. For
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practical applications in which a hazard-potential rating is desired, the user must translate these

stability terms into rnanagement criteria (e.g., low, moderate, high) based on an empirical

knowledge of instability or other diagnostic criteria. In this paper, we offer one option for

creating management criteria from model output.

Most model applications that have been published to date (Montgomery and Dietrich,

1994; Montgomery et al., 1998) have held soil properties and hydrologic variables constant (i.e.,

soil depth, internal angle of friction, and transmissivity, and effective soil cohesion; see paper

section 3.3 for additional discussion). This method reduces the functional elements of the

model to those related to topography (i.e., gradient and curvature) and area (i.e., contributing

area upslope  of each topographic element).

Model results have been compared by the authors with landslide inventory maps for

small coastal catchments  in northern California, central Oregon, and the western Olympic

Peninsula (Montgomery and Dietrich, 1994). In addition, Montgomery et al. (1998) have tested

model performance  in 14 watersheds for which landslide inventories have been compiled.

SHALSTAB is available from the authors and at the Internet Web site of the LJniversity  of

Washington.

2.41 Other models not selected for this study

A number of ‘other  models were considered but not chosen for this comparative test

because of availability and software-development issues. They include shallow landslide

models of WLI and Sidle (1995),  Wu and Abdel-Latif (1995, 1997). Pack et al. (1998),  and

(Earth Systems Institute, pers. comm.).  Other methods were too site-specific to be applied over

large geographic areas, as required of a watershed analysis or statewide landslide screen (e.g.,

LISA and DLISA; Hammond et al., 1992). For a general review of analytical methods other
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than G&based  modeling, see literature reviews in papers by Montgomery and Dietrich (1994)’

and Wu and Sidle (1995).

Although not available or testable in their current form, these models show promise for

future management applications, in ,that  they explicitly treat a number of the problematic spatial

and temporal distributions in critical slope-stability factors. Better physical characterizations of

these factors could improve predictive capability of GIS modeliing techniques beyond those

employed currently in SHALSTAB and SMORPH. Any of these models reasonably could be

developed as a GIS slope-stability cover should they prove in future to yield more accurate

predictions of landslide potential. Similar to SHALSTAB, several of these models (e.g., Wu and

Sidle, 1995; Wu and Abdel-Latif, 19g7)  would require an additional algorithm that instructs the

user on translating model output into management criteria (e.g., low, moderate, high hazard).

These models are summarized in subsequent paragraphs, to illustrate their similarities and

dissimilarities with the models used in this comparative test (i.e., SHALSTAB and SMORPH).

The dSLAM  model (Wu and Sidle, 1995) currently is not available for public use and,

hence, could not be evaluated fully. It couples DEM data with a planar infinite-slope stability

model, a hydrologic algorithm that simulates groundwater movement as kinematic waves

through topographic elements similar to those constructed in the SHALSTAB model, and an

algorithm that explicitly characterizes root strength. Whereas contributing rainfall is treated as

steady-state in the SHALSTAB model, this model can accommodate spatially constant but

temporally varying rainfall input (i.e., single or multiple storm events). Hence, the model must

calculate a factor of safety in time steps to simulate the measured rainfall patterns. The model

requires as input site-specific data on soii properties, vegetation type and age, and individual

storm hyetographs (e.g., actual or simulated). Consequently, this model is computationally

more complex and labor-intensive than the SHALSTAB model. Outputs of these model
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simulations are shown as landslide and debris-flowzpath  location maps, factor-of-safety

distributions, and distributiorls  of failure (i.e., hazard) potential. Management criteria (i.e., low,

moderate, high “hazard”) must be assigned by the user based on local knowledge. The dSLAM

model has been evaluated by the authors on its ability to reproduce physical characteristics of

measured landslides in a small ,tributaty  drainage in the Oregon Coast Range.

The shallow landslide model of Wu and Abdel-Latif (1995, 1997) currently is not

programmed to run on one operating system (T.H.  Wu, pers. commun.)  and, hence, was not

accessible for the purposes of comparing GIS models in the Arc/Info’” environment without

additional programming work. This model operates similarly to SHALSTAB, by calculating

water-table heights in hillslope elements based on DEM data, and applying them to infinite-

slope calculations of factors-of-safety. The slope units in which the water-table heights are

derived can be of varying size and are chosen by Microlmage MIPS (Map and Image

Processing System). The hydrologic model component (Wu et al., 1993) is based on a lumped-

parameter, kinematic storage model using a first-order, second-moment approach to allow for

stochastic soil-hydrologic properties (Reddi and Wu, 1991),  in which the mean and variance of

model output are determined from the mean and variance of model input. Rainfall and/or

snowmelt  is used to generate piezometric levels of corresponding recurrence intervals. The

piezometric input is added to soil-strength properties to generate probabilities of failure for each

slope element. Model output is a map showing ranges of failure probabilities (e.g., ~0.01,  O.Ol-

0.05, 0.05-0.10, >O.lO)  for water inputs of a given recurrence interval. Such maps can be

improved by using smaller slope elements, more data on soil properties, and updating with

empirical landslide information. This model has been used to generate hazard maps for two

USGS 7.5’ quadrangles in Lewis County, Washington, and compared with landslide maps of

that area generated by Dragovich and Brunengo (1995).
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The SINMAP  model of Pack et al. (1998) is freely available on the Internet. We were

not able to resolve with the authors a potential problem with the hydrologic component of the

model during the course of this study and, hence, could not complete a test of model

performance. This model is operated in GIS ArcView  and couples the infinite-slope model with

a topographically based, steady-state, hydrology model. The model requires no input data for

soil, vegetation, and geologic factors known to influence slope stability; rather, these critical

parameters are modeled as uniform distributions between empirically derived limits. The user

may “pick” appropriate values for a specified watershed based on the ability of the resulting

output to “capture” a high proportion of observed landslides and minimize the number of

incorrectly identified sites (i.e., areas in which no landslides have been observed). Hence,

model calibration requires the use of landslide inventory data, similar to the SMORPH model.

Slope stability classes (e.g., low, moderate, high) are assigned based on a slope plot of

landslide and non-landslide points.

The shallow-landslide prediction method of Miller (Earth Systems Institute, pers. comm.)

was not fully developed in time to be included in this comparative test. Their method couples a

modified form of the SHALSTAB model with a debris-flow-runout algorithm (Benda and Cundy,

1990) that predicts the potential delivery of landslide materials to the stream-channel network.

This algorithm adds substantially to the management applicability of this method. For example,

in the Washington State regulatory context, a management “hazard” is defined as the

“likelihood of deliverability and adverse change to public resources” associated with a forest-

practices activity (WFPB, 1995; Chapter 222-22). Assigning a management rating, therefore,

requires that the identified landslide be assessed to determine whether mass-wasting debris

entered stream channels and was delivered to a reach with sensitive public resources (e.g., fish

habitat), Hence, the debris-flow component might assist managers, particularly in addressing
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landslide impacts on downstream resources. The model author also has modified the steady-

state rainfall criteriorl  to calculate critical rainfall intensity as a function of storm duration.

Similar to the SINMAP  algorithm for assigning landslide hazard calls, the model defines hazard

on the basis of critical rainfall intensity and soil-parameter values required to “capture” 90% of

the observed landslides in a given basin. Hence, this method also requires the use of landslide

inventory data to calibrate slope-stability predictions and assign management criteria.

3.0

3.1

Methods

Study areas and landslide data

We chose eight areas in western Washington (Figure 1) for this comparative test. The

test basins range in size from 81 km* to 331 km2(Table  4). Existing Watershed Administrative

Units (WAUs)  were Iused  as the test-basin boundaries, wherever possible. WAUs,  defined for

the purposes of regulatory watershed analysis, typically follow major drainage divides; the

larger-order river systems, however, may be divided into several WAUs  to limit the watershed

analyses to a maximum acreage that reasonably could be assessed in the limited time period

permitted by law (WFPB, 1995). Hence, some of our test basins comprise only the upper or

mid- sections of a major river system (e.g., Chehalis Headwaters WAU, Middle Hoh WAU).

Preference was given to those WAUs  with recently completed watershed analyses, to utilize

existing databases and to take advantage of the standardized format of data collecting used in

this regulatory process.

One test basin (i.e., Morton) was created from portions of two existing WAUs  (i.e., East

Fork Tilton  and Nineteen Creek) to accommodate data restrictions imposed by one of the

models (i.e., Wu and Abdel-Latif, 1995, 1997) that was to be tested. As described previously,

this model was incompletely programmed at the time of this study. Nonetheless, we continued
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using the Morton basin for tests of other models, since all landslide data had been compiled in

preparation for testing the Wu and Abdel-Latif model.

We attempted to include at least one test watershed in each of the major geologic

provinces in western Washington (Table 4; Thorsen, 1978). Parent materials range from glacial

till/outwash  and lightly metamorphosed sediments to volcanics and igneous intrusives. Test

basins also vary in topographic relief (i.e., lowest to highest elevation points) from 818m.,  in the

Chehalis Headwaters basin, to 1941m. in the Jordan-Boulder basin. Figure 2A and 2B

demonstrate the relative relief differences between two test basins and show the spatial

distribution of shallow landslides identified in recent watershed analyses. Our intent was to

examine model performance in areas with different combinations of relief and parent materials,

as a means for exploring model versatility and the feasibility of using each model as a

management tool in diverse topographic and geologic settings. An apparent gap exists in our

selection of test basins, between the North Fork Stilliguamish and Morton watersheds (Figure

1). The central Cascades Range, roughly from the Snoqualmie River basin south to the Morton

area, however, generally contains similar geologic units (i.e., rhyolitic to dacitic volcanics with

associated elastics,  intrusives, and scattered sedimentary basins; Schuster, 1992). Hence, we

chose the Stilliguamish, Hazel, and Jordan-Boulder basins to represent the Cascades geologic

units north of the Snoqualmie basin, and the Morton and East Fork Lewis basins to represent

those to the south.

The eight test basins contain a total of 2524 known landslides (Table 4). including

shallow and deep-seated landslides (i.e., earthflows). We retained data on deep-seated

landslides (e.g., earthflows) in the test database to evaluate the ability of each model to predict

shallow landslide features that often are superimposed on more areally  extensive earthflows.

Predictions of unstable slopes made by each GIS model were compared with existing

2 6



landslide inventories and, where possible, hazard-zonation maps. Figures 3 A, B, and C ’

illustrate three different test basins and show the existing SOILS screen with landslide-inventory

data superimposed, the hazard-zonation maps from watershed analyses, and the model

outputs from SHALSTAB and SMORPH. Note the differences in the geographic extent of the

SOILS cover (Figures 3A versus 3C),  and the variations in mapping styles used in hazard-

zonation maps (Figures 3A versus 3B).

Existing digital landslide inventories were acquired from the appropriate landowners in

the test basins where watershed analyses had been performed (Table 5). VVhere  inventories

were not current or were spatially incomplete (Le.,  original inventories covered only portions of

the test area), we conductecl aerial-photograph and field surveys to fill in data gaps. Aerial-

photo series extended from the mid-1940’s through 1996, in most instances. All inventories

were updated chronologically to include, at a minimum, the most recent storm event known to

have triggered widespread landsliding throughout Washington State (i.e., the high-intensity,

long-duration storm of February, 1996; Gerstel, 1996). In addition, most inventories were

checked in the field to verify database accuracy (e.g., landslide type, location, size). Road-

related failures wen?  retained in the test database, to evaluate the theory (e.g., Montgomery et

al., 1998) that their locations arc?  governed largely by hillslope gradient and topographic

convergence. Standardized field data-forms were designed similar to the those used in the

mass wasting assessment of the regulatory watershed analysis (WFPB, 1997, Appendix A).

Newly identified landslides were mapped on to 1:24,000 scale topographic maps and then

digitized into the Gl!S  (Arcllnfotim,  version 8.0, for IJNIX on a Solaris platform), coded, and edit-

checked for positional and tabular accuracy.

In some cases, we updated the landslide inventories to include small landslides (i.e.,

less than lOOm*) that might have been omitted due to time and mapping-resolution limitations
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that customarily constrain the regulatory watershed-analysis process. We increased the ’

number of recorded landslides on these inventories by an average 12%, during our field and

aerial-photo verifications of the databases. In the Upper East Fork Lewis River watershed, for

example, our reanalysis of the GIS landslide-inventory cover maintained by the USFS resulted

in a 70% increase in the number of recorded landslides. Hence, the watershed-analysis-

derived landslide inventories really only provide a lower limit on the number of landslides

present during the time period evaluated by the analyst (i.e., typically coinciding with the aerial-

photo record). Consequently, landslide inventories were used here only as a common basis for

comparing model abilities to predict known contemporary landslides, recognizing that other

shallow landslides have been overlooked or perhaps no longer can be discerned in the field  and

photo records due to such obscuring factors as vegetation regrowth. Additionally, we assumed

that hazard-zonation maps, if carefully constructed, capture a fair percentage of topographic

features that could have influenced landslide initiation in the more distant past.

All inventory data were projected into Washington State Plane, south zone, North

American Datum 1927. Having all data in the same projection allowed us to easily incorporate

other existing data (e.g. hydrograph’y,  transportation), as well as provide a uniform projection

from which to work.

We encountered a number of problems with existing landslide data while updating and

verifying mass-wasting inventories from the completed, regulatory watershed analyses. These

included incorrect basemaps  on which landslides were recorded, as well as incorrectly mapped

landslides. Discrepancies between USDI  Geological Survey (USGS) topographic maps and

basemaps  created from GIS for use in watershed analysis typically included differences in

topographic-contour delineations and stream-channel positions. Keying landslide locations to

these features on USGS topographic maps, for example, apparently cause a positional offset
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when data are transferred to GIS DEM-based topography. A number of mapping errors also

appeared to be related to inaccurate transfer of field data onto basemaps  or incorrect digitizing

from basemaps. In ,the  Sol Due watershed, for example, we determined from a reassessment

of aerial photographs that several landslides were mapped in tributaries adjacent to the ones in

which they actually exist. Hence, we remapped and redigitized landslides wherever we

encountered such discrepancies during field or aerial-photo verification.

Another common mapping problem is related to landslide size. Mapping techniques

used by watershed analysts ranged from representing landslides as a point or symbol (e.g.,

circle) to delineating slides as polygons of finite area. The latter technique also included a

range of mapping styles, from mapping the failure scarp  separately to delineating the entire

portion of slope invo’lved  in landsliding (e.g., some combination of the contributing area,

initiation point, transport zone, debris-flow runout track, and depositional area), generally

accompanied by littl~e  or no explanation of mapping style. In addition, landslide mapping is

prone to some amount of inaccuracy, given that data are transferred between a number of

different media (e.g., photos, maps, digital databases) with varying levels of resolution and

precision, and often between different workers (e.g., field technicians, analysts, cattographers).

To address problems of mapped landslide location and size, we created a buffer around

landslides mapped as  points or symbols, or polygons smaller than lOOm*. The buffer, mapped

as a polygon of radius 15m. (50 ft.) around the presumed center of the landslide feature,

assured

that landslides registered in a lOOm* DEM grid cell when inventory data were compared with

GIS model output. lln many cases, landslide scarps  and bodies were remapped, during aerial-

photo and field verification of the existing databases, to exclude associated features (e.g.,

contributing areas and debris-flow runout  tracks). The landslide polygons then were joined with
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3.2 DEM data

Where available, we used DEMs  with 10m. grid resolution for the comparative test

(Table 5). As discussed in paper section 4.5, we also compared model output using IOm.  and

30m. DEM data, to evaluate the relative percent change in area predicted to fall in each slope-

stability class and to quantify the increase in computational time that accompanies the use of

finer-resolution DENS.

All GIS-based models described in this study depend heavily on DEMs. DEM problems

commonly reported in the literature, and also evident in this study, include resolution and

mapping artifacts. DEM data usually are distributed as datasets  with borders approximating the

boundaries of the original USGS topographic quadrangles, referred to cartographically as tiles.

“Tiling” artifacts can occur along the seams between adjacent sets of DEM data (Figure 4, lower

left), interrupting the actual represented surface with artificial cliffs along the tile edges. Tile

edges often are interpreted by the GIS shallow-landslide models as representing areas of

instability. This type of error only occurs at tile edges and does not propagate into the dataset.

Tiling artifacts were observed most frequently in the 30-m. DEM data used in this study.

“Edge effeck”  occur when the outermost grid cells of the study area (i.e.,  the clipped

edges of the DEM) do not have the same general values as adjacent cells (Figure 4, lower

right). This phenomenon only affects the outermost two or three grid cells at the edges of the

DEM, and it does not propagate into the dataset. To eliminate edge effects in the test

databases, all GIS !shallow-landslide models were run on a DEM grid larger than the basin area.

The model output then was clipped along with the basin boundary.

In the 10-m. resolution data, the elevation values appear to have a slightly stepped

pattern, resulting in model output with elevation bands (e.g., contours) of similar predicted

velue. Typically, ballding  results in slope-parallel arcs of one hazard-potential class, within
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broader polygons of a different hazard-potential class (Figure 4, upper left). The cause of this

elevation banding is unknown; however, it may be related to the original elevation-value

collection scheme. Elevation data were created by scanning USGS 7.5minute topographic

quadrangles, vectorizing the scanned data, coding the vectors, and then assigning x, y, and z

coordinate values on a 10-m. grid using linear interpolation. This process may result in some

elevation banding. DEM data with 10-m. resolution are not subject to many smoothing filters,

as smoothing tends to degrade original topographic data. This lack of smoothing may also

have some effect on elevation banding.

Resolution of available DEMs  also can be problematic for precisely locating terrain

features. As discussed in paper section 4.5, the relative resolution of 10-m. versus 30-m.

elevation data creates a better representation of the actual ground surface (e.g., see Figure 5),

especially in resolving small stream channels emanating from zero- and first- order basins,

common initiation sites for shallow landslides (Dietrich et al., 1986). For example, 30-m. DEMs

have a resolution in the x- and y- planes of 30.5 m.  (100 ft.) and 45.7 m. (150 ft.). Hence,

landslides digitized onto 30-m. DEMs  from USGS topographic maps can be positioned more

than one DEM grid cell from their true location, resulting in mismatches between spatial

distributions of inventoried landslides and DEM grid cells with predicted unstable slopes. In

addition, contour splines fit through 30-m. DEM elevation points can lack curvature more

characteristic of USGS topographic maps, causing an artificial angularity in topographic

features and resulting in relatively poor matches between contour crenulations  and stream

courses overlain from GIS hydrology layers. The finer resolution of 10-m. data (i.e., 12.2 m. (40

ft.) in the x- and y- planes, and 15.2 m. (50 ft.) in the z-plane), which is similar to that reported

for USGS 7.5minute quadrangles, results in a nearly accurate match between DEM-derived

map contours and those on USGS maps. Consequently, the potential for matching errors

3 2



between DEMs  and landslides digitized from topographic maps is considerably less when using

10-m. versus 30-m. DEMs.

3.3 GIS model calibration and database development

The SOILS screen required no adjustments to be employed in this study, and in fact

cannot be adjusted to accommodate any new information, including altered soil classifications

or gradient classes, without significant revamping of the GIS cover. The digital soils database

for federal lands, mzaintained  by the USDA Forest Service on the Internet, was merged with that

maintained for state! and private lands by the WDNR (1988). Nonetheless, six of eight test

basins had incomplete digital soil covers (Table 5),  due largely to gaps in soils-layer coverage

on federal property (e.g., Figure 6). For statistical analysis of comparisons between the digital

landslide inventories and soils slope-stability cover in these test basins, an existing landslide

was given a “no data” value where the soils cover was lacking.

The SMORPH  model was calibrated in each test basin with its respective landslide-

inventory data to adjust the critical slope classes and their hazard-rating designations in the

gradient-curvature matrix (Table 2). A slope map derived from the DEMs was intersected with

the landslide inventory to determine the maximum gradient found in each landslide polygon. A

curve of maximum gradient ‘versus cumulative frequency percent was created (Figure 7)  with

the lowest gradient at which a landslide occurred being used to determine the lower class limit

of the moderate hazard rating. The lower class limit of the high hazard rating was established

al: a value for which 15% of the landslides occurred (Table 6)  to guarantee a model-prediction

rate of at least 85% of observed landslides.

For consistency with other published tests of the SHALSTAB model (e.g., Montgomery

et al., 1998)  we used the following soil-property values: soil depth (z) = l.Om;  soil bulk density
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(p,) = 2000 kg/m3;  internal friction angle (I$)  = 33”; effective cohesion (C’) = 2 kN/m*;  and ’

transmissivity (T) = 65 m’/day.  These values were selected by Montgomery et al. (1998) based

on extensive field measurements in a small catchment in coastal Oregon (Montgomery et al.,

1997)  and the authors felt that they gave reasonable results for their test watersheds in

western Washington, including the Chehalis Headwaters WAU that we also use as a test basin.

We then compared predictions of unstable-slope potential for the range of @ angles and

effective cohesions  set internally in the model to yield a standard range of outputs (i.e., default

parameters; @ = 33”and  45”,  and c’= 0, 2, 5, 8, 15 kN/m2),  to evaluate the effect of modifying

these parameters. In section 4.2 of this paper, we discuss the sensitivity of model output to

variations in input values.

Comparing SHALSTAB with the other GIS models required that we reduce all model

outputs to a common denominator. SMORPH and the SOILS screen yield output in terms of

management hazard ratings (e.g., low, moderate, high), in which the more subjective

determination of what constitutes “hazard” and “risk” previously has been made in the policy

arena. For example, the SMORPH slope matrix is calibrated with landslide-inventory and

hazard-zonation databases created during regulatory watershed analyses for which definitions

of hazard and risk have been set by T/F/W policy and WFPB regulations (WFPB, 1995, Chapter

222-22 WAC). Likewise, the SOILS screen hazard designations are derived from unstable-

slope ratings in the state soil surveys. In the absence of another mechanism for converting all

model outputs to the same units of measure, we therefore elected to assign hazard ratings to

the SHALSTAB model output values of predicted critical rainfall, by using rainfall intensity and

duration as the diagnostic criteria.

Given that SHALSTAB model output is expressed as rainfall in mm/day, we created

“precipitation rules” for each test basin by clipping the two-year, 24-hour storm isohyte data
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(VVDNR-GIS; Miller et al., 1973) and computing the-minimum, maximum, and mean ’

precipitation values for each basin. A high hazard rating was given to each DEM grid cell in

which the predicted critical-rainfall value fell in the model-defined Q, -stability class occupied by

the mean precipitation value calculated for that basin (Table 7). A high rating was also given to

any predicted Q, less than the minimum two-year, 24-hour calculated precipitation. A moderate

hazard rating was assigned to a DEM cell in which the critical rainfall value occupied the Q, -

stability class corresponding to the maximum calculated precipitation. A low hazard rating was

assigned to all other Q, stability classes. See Table 7 for the precipitation rules and slope-

stability hazards created for each test basin.

The two-year, 24-hour  recurrence interval was chosen as the precipitation regime for

which data were readily available and which yielded the most conservative estimate of failure

potential. The SHALSTAB model is configured such that the less frequent rainfall event yields

a greater percentage of the basin area predicted to fail (Montgomery and Dietrich, 1994).

Theoretically, then, a higher-intensity storm event characteristic of a longer recurrence interval,

and/or a longer-duration rainfall, would result in greater spatial distribution of potential shallow

landslides.

This method of assigning management criteria to SHALSTAB output was chosen in the

absence of established techniques or direction provided by the authors (e.g., see discussion of

management applications in Montgomery et al., 1998). A preferred approach might be to.adjust

the model in each test basin by using measured values of input parameters (e.g., soil

transmissivity, bulk density, cohesion, internal friction angle), and calibrating predicted

distributions of slope stability with observed landslide inventories and/or  associated hazard-

zonation maps in which management criteria have been assigned (i.e., similar to the approach

used by SMORPH). Adjusting input parameters in the current version of the SHALSTAB model
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is problematic, given the relative paucity of soil-property data and the current lack of published

algorithms for modelling stochastic elements or calibrating them from landslide inventories.

Obtaining sufficient soil-parameter samples to adequately describe their spatial variability also

could be intractable or prohibitively expensive for creating a landscape or regional GIS cover of

predicted slope stability.

Calibrating model output with landslide-potential ratings from hazard-zonation maps is

problematic. We found, for example, that hazard map units with different management

designations (e.g., low and high) might contain DEM grid cells with the same range of Q, - slope

stability class values (e.g., 2 through 7; see Table 3) making it difficult to segregate the eight

model-output classes into discrete management categories of low, moderate, and high.

Calibrating model outputs solely on the basis of landslide inventories also can be misleading

because, as discussed previously, they typically represent only contemporary rates of shallow

landsiiding, thus conceivably underestimating the density of potential landslide sites. Landslide

density commonly has been a key factor in assigning management criteria to hazard-potential

map polygons created from inventories (e.g., WFPB, 1997).

The precipitation rules imposed by this study make a number of assumptions, not the

least of which is steady-state throughflow of subsurface water. The SHALSTAB model,

however, is founded on the assumption of steady-state rainfall, constant transmissivity, and

spatially uniform soil saturation (Montgomery and Dietrich, 1994). Hence, the steady-state

precipitation rules are consistent with these assumptions. As described further in report section

4.1, the similarity of watershed-analysis-derived hazard-zonation maps and maps of landslide

hazard potential made with SHALSTAB precipitation rules suggests that this approach yields

reasonable results. Consequently, we have subscribed to this method in the absence of a

proven alternative.
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Figure 8 illustrates SHALSTAB model predictions of shallow-landslide potential in the ’

Jordan-Boulder test basin, using the author-defined Q, criteria (Figure 8A) and predictions in

terms of management criteria as defined by the precipitation rules (Figure 8B). The

comparatively large amount of area classified as high “hazard” by the precipitation-rule

designations likely is the result of the way in which subsurface water throughflow, and hence

“soil wetness” necessary to destabilize slopes, is calculated by the model. In the SHALSTAB

program, water can Row through any one of a nurnber of flow tubes that might diverge around

topographic high points. Hence, the program codes these flow tubes, including the ones over

intervening divergent topography (e.g., narrow ridgelines) as relatively unstable, which, in turn,

are classified as high “hazard” by the precipitation rules, When the magnitude of effective

cohesion is increased, resulting in less area classified as highly unstable, the model incurs

relatively greater error in predicting known, existing landslides. Thus, the model has the

potential for erring o,ne  way or the other depending on the assigned values of the input

variables. One approach for resolving this dilemma would be to iterate on the magnitudes of

cohesion until a value is achieved that yields model output most closely resembling the spatial

distribution of existing landslides. As an additional note, the juxtaposition of high and low

“hazard” units in the lower portion of the figure is not an artifact; this terrain contains very steep,

generally unstable slopes that terminate on flat, glaciated valley bottoms (e.g., see Figure 2A).

4.0 Test Results and Discussion

For the purposes of testing and comparing models, a number of criteria are used to

evaluate the predictive capability and management applicability of each model. Test criteria

have been divided into two categories: scientific and technical. Together with the critical

questions that we posed for each model, these criteria are:
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[A] scientific:

(1) model performance: How do model predictions of shallow landsliding compare with

existing landslide inventories and hazard-zonation maps? How do model

predictions compare with respect to each other?

(2) method limitations: Do data input requirements, particularly those dependent on

fieldwork, limit the utility of the model? Are model assumptions regarding

geomorphic processes or input variables relevant to all western Washington

watersheds?

(3) geographic applicability: Is the model appropriate for use in all forested watersheds

in western Washington, and can a reliable slope-stability map cover be created

for regional or statewide use?

(4) management applications: Can the model be applied to management decision-

making, and if so, are they accessible to users?

(5) modification requirements: What additional adaptations must be made to facilitate

creating management criteria (e.g., low, moderate, high “hazard”) from model

output? Could and should the model be modified by its author(s) to improve its

predictive capability for all terrain types in western Washington?

[B] technical:

(1) computational time: How long does it take to run the model for an average-sized

basin (e.g., on the order of a WAU)? How long would it take to create a GIS

cover for western Washington?

(2) training requirements: Assuming basic computer skills, how much training is needed

to run the model, interpret model results, and apply results to management

problems?
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(3) data requirements: Can the model be run with default values for input variables, if ’

field data are nonexistent? Does model accuracy improve with increasing DEM

resolution?

(4) data storage and retrieval: Do model runs or their output require large disk-storage

space? Can the model be run on a personal computer (PC) with GIS software?

(5) modification requirements: Is the model computer code adequately documented to

aid users in adjusting input values or programming management criteria? Are

further modifications needed to adapt the model for management use?

In this paper section, we discuss issues [A] (1 through 3) and [B] with respect to the three

tested models. Management applications and model modification requirements are discussed

in report section 5.0.

4.1 Model perfolrmance

We evaluated the performance of each model by using the GIS to intersect the updated,

digital landslide inventories and hazard-zonation maps with model predictions of slope stability.

For each model, output was expressed in terms of management criteria (i.e., low, moderate,

high “hazard”), as described in the report section 3.0, so that model performances could be

compared directly. We statistically analyzed the following, as a measure of the performance of

each model: (1) intersection of the digital landslide inventory with model predictions of hazard

potential, expressed as the number of incorrectly identified landslides per

total number of landslides in each test basin (i.e., Type I model errors);

(2) intersection of the hazard-zonation maps with model predictions of hazard potential,

given as the percent probability that the model predicts a low landslide potential

where it is likely that landslides have occurred or will occur (i.e., Type I model
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errors); and,

(3) intersection as in (2) but expressed as the percent probability that the model predicts

the potential for landslides where they are not likely to occur (i.e., Type II model

errors).

inventories of known existing landslides and maps of hazard potential often are used in

different management contexts. For that reason, we calculated Type I errors first by

intersecting model outputs with the landslide inventories, to evaluate the ability of each model to

predict the spatial distribution of existing landslides. We then computed Type I errors

associated with comparing model outputs and hazard-zonation maps, to assess model abilities

to predict the spatial distribution of existing and potential slope instability. Given that landslide

inventories typically provide only a minimum estimate of contemporary landslide rates, the

hazard-zonation maps theoretically yield a more complete view of the spatial distribution of

past, present, and potential future landslide occurrences.

Table 8 lists, for each model, the number of incorrectly identified landslides per total

number of landslides in each test basin (i.e., Type I errors). We assumed that an existing

landslide was identified incorrectly if all DEM grid cells overlapping the landslide polygon or its

15m. (50 ft.) buffer (e.g., see report section 3.1) were coded by the model as having a low

potential (hazard) for shallow landsliding. Conversely, an existing landslide was assumed to be

identified correctly if any overlapping DEM grid cell was predicted to have a moderate or high

potential (hazard) for landsliding. DEM cells with no data entry in the SOILS screen (i.e.,

missing soil-survey data) were coded as an incorrect identification, to account statistically for

the incomplete nature of the data coverage. For this test, the SHALSTAB model was run using

default parameters $I = 33” and C’ := 2 kN/m2  and assuming that the two-year 24-hour storm

recurrence interval is a reasonable criterion for assigning hazard-potential ratings to the model
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output (i.e., see report section 3.3).

A principal assumption of the model comparative tests is that predictions of landslide

probability densities can be cornpared even though the GIS covers contain known mapping

artifacts (e.g., elevation banding), as described in section 3.2. Given that model predictions of

slope stability are evaluated using the same DEMs  and landslide databases, the model outputs

could be evaluated relative to one another. However, computed statistics (e.g., average

number of landslides incorrectly identified by each model) should be viewed as estimates rather

than absolute values, because the errors in model predictions associated with database noise

(e.g., DEM elevation banding, field-mapping accuracy and resolution).

Table 8 indicates that the SOILS screen did not identify 32% of the total known

landslides in all eight test basins, whereas the SMORPH and SHALSTAB models misidentifed

3% and 8%, respeclively.  Figure 9 displays the relative range of model predictions with

SMORPH versus SHALSTAB. shown as histograms of the number of total landslides predicted

in each model-output category. According to the precipitation rules, SHALSTAB classes of Q, =

1,  2, 3, f 4 fall in the management-criteria class 3 (i.e., high “hazard”). Montgomery et al.

(‘1998) also reported from their test of the SHALSTAB model that it predicted unconditionally

stable slopes in 24% of the area containing known existing landslides, although they discounted

approximately half of these failures as being road-related or undistinguishable on 30-m. DEMs

and, hence, outside the realm of model predictive capability. The use of more accurate DEMs

could account, in part, for the relatively smaller fraction of landslides undetected by SHALSTAB

in this test. The significantly higher percentage of landslides missed by the ,SOlLS  screen can

be attributed to the lack or near lack of soil-survey data for two of the test basins (i.e., the North

Fork Stilliguamish and Upper East Fork Lewis watersheds; see Table 5),  given that missing

data were coded as undetected landslides for the purposes of comparing model performances
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(see report section 3.1). Where the SOILS screenwas complete (e.g., Morton and Chehalis

Headwaters watersheds), however, it misidentified a significantly higher percentage of

landslides than the other two models (e.g., for the Chehalis Headwaters watershed, 32% versus

2% each for the SMORPH and SHALSTAB models).

In the Olympic Peninsula test basins, the SOILS screen misidentified more landslides

than SMORPH but fewer than SHALSTAB (e.g., in the Hoh watershed, 67 versus 53 and 84,

respectively). The fact that these were the only basins for which 30-m. DEMs  were used was

ruled out as a likely cause. In other test basins for which model results were compared using

both 10-m. and 30-m. DEMs,  there was no change in the ordering of models based on their

predictive accuracy, although the relative magnitudes of predicted landslide occurrence (i.e.,

number of correctly identified existing landslides) differed between 10-m. and 30-m. DEM test

results for each model. Hence, the seemingly better performance of the SOILS screen might

be explained by at least two compounding factors. One is that, for the portions of the test

basins in which soils data exist, the SOILS screen classes 68% of the Sol Due and 84% of the

Hoh basin terrain as potentially unstable or very unstable, so that the majority of the landscape

and its associated landslides fall within the high-hazard-potential category. Although this result

lends the appearance that the SOILS screen more closely reflects the spatial distribution of

known landslides than does SHALSTAB. it also tends to over-predict significantly the percent of

watershed area predicted by field-derived, hazard-zonation maps to be potentially unstable (see

further discussion of the SOILS screen in this paper section).

Another compounding factor is that the SOILS screen and SMORPH model consider

hillslopes as being potentially unstable at gradients somewhat lower than the threshold gradient

defined in the SHALSTAB model. In the latter model, slopes are considered unconditionally

stable when tan8 < tan@  [I - (p,,/p,)]  which, for @I  = 33” and p, = 2000 kg/m3,  means any slopes
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less than 18” (32.5%). Field evidence suggests that non-road-related shallow landslides have

occurred in this region on slopes closer to 25% (e.g., Shaw and Johnson, 1995; D. Parks,

WDNR, pers. comm.),  particularly in gently sloped, groundwater-seepage areas whose

downslope margins coincide with the top of steep, inner-gorge slopes, which are quite common

in this terrain. Hencse,  the SHALSTAB model has the potential for under-predicting the spatial

distribution of unstable ground on hillslopes with gradients less than the threshold value set

internally by the model.

The SMORPH model predicted an average of 22 times fewer Type I errors than the

SOILS screen and five times fewer than the SHAL.STAB model. The greatest discrepancy in

SMORPH and SHALSTAB model predictions occurred in the Hazel watershed (1% versus 32%

incorrectly identified; Table 8). Given that the Hazel watershed is dominated by deep-seated

landslides in thick glacial deposits  (Table 4). we expected the predictive capability of both

models to diminish correspondingly, with respect to locating earthflow-influenced topography. It

appeared, however, that SMORPH was better able to distinguish the local slope and curvature

of numerous shallow-landslide headscarps superimposed on the larger earthflows. Hence, the

polygons representing deep-seated failures effectively were identified by SMORPH predictions

of high hazard potential on the basis of these smaller secondary features.

This variatiorl  in results might be explained by the manner in which the two models

identify “hazard” potential in adjoining DEM grid cells. The SMORPH model analyzes variations

in topographic relief between adjacent cells based on their relative steepness and curvature,

then assigns a value according to the slope matrix (Table 2); hence, the model can discern

topographic changes between a flatter upslope  cell and a steeper downslope cell (i.e., a

landslide headwall). On the other hand, the SHALSTAB model can smooth (i.e., not detect)

subtle variations in topographic relief at the DEM-cell scale, by assigning a given flow tube a Q,
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value depending on the flow across its upper boundary (i.e., variable “a” in Equation 2) from

upslope  contributing areas, which, in turn, is governed by the way in which flow is dispersed

from that contributing area to any one of a number of downslope grid cells. Hence, if the

upslope  contributing area has a lower gradient and requires a relatively higher water flux to

create “wet” soils, then a relatively steeper cell downslope (e.g., a landslide headwall) might not

be predicted to fail until the same “wetness” is achieved. Hence, the grid cell downslope of the

contributing area is given a lower slope-stability rating, whereas SMORPH assigns a higher

value based solely on topographic factors.

Although Table 8 indicates that SMORPH yielded 43% fewer Type I errors in predicting

known landslide occurrences than SHALSTAB (Table 8) we wanted to evaluate whether these

differences in model performance, based on a comparison in eight watersheds, were significant

statistically. We used a non-parametric test for non-normally distributed, small, independent

samples to evaluate the hypothesis that there is no difference in the average performance of

the SMORPH (SM) and SHALSTAB (SH) models, in terms of their ability to predict the spatial

distribution of known landslides. The null hypothesis is that the means (u) of the population of

Type I errors for each model are equal when only eight independent samples (i.e., test basins)

exist; H,: us,,  = uSH. Equality of means was tested with the Wilcoxon  rank-sum statistic for two

populations (Walpole, 1974; MathSoft  1998)  in which the null hypothesis was true if:

Pr [wi w = (a - n(n+1)/2)]  > a,

where Pr is the probability distribution, W is the test statistic, a is the smaller of the summed

ranks for each population, n is the number of observations corresponding to a, and a = 0.01,

0.05 is the level of significance. Table 9 indicates that the test statistic is significant at a

confidence level of 95%,  permitting rejection of the null hypothesis, which suggests that the

models differ somewhat in their ability to predict known landslide distributions; that is, uSM c uSH.
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However, the test statistic proved insignificant at the 99% confidence level (Table 9),  allowing.

acceptance of the null hypothesis and implying that the difference in model predictive capability

is relatively small. A similar statistical comparison of SHALSTAB and the SOILS screen

indicated that the te:st  statistic was significant at the 99% confidence level, implying that the

screen and model are considerably different in their ability to predict existing landslide

distributions.

Tables 10 and 11, respectively, give the estimated Type I and Type I I model errors for

the SMORPH and S’HALSTAB  model based on a comparison of model output with hazard-

zonation maps. Error distributions were not computed for the SOILS screen, given that soils-

survey data were complete in only two of the test basins, neither of which had usable hazard-

zonation maps. Type I errors were calculated, for each model in each test basin, by

intersecting the low-hazard DEM cells predicted by the model with the moderate- and/or high-

hazard map units produced via watershed analysis (i.e., incorporating all map units intersecting

with known landslides in the GIS inventory layer). This database intersection was expressed

numerically as a percentage of model-predicted, low-hazard areas (in km>)  overlapping field-

mapped hazard areas. Type II errors similarly were analyzed by intersecting the high-hazard

cells predicted by the model with the low-hazard map units and computing respective areas,

These estimates were made for the four basins in which we had access to complete, digitized,

hazard-zonation maps. To facilitate comparison (see Table 10 and 1 I), the percent error for

each model (A/M) in each basin was normalized by the basin area in a given hazard class (A)

divided by the total A for all four basins (T), that is: E = (NM)(AfT).

Analysis of Type I error estimates with respect to hazard-zonation maps indicates that

the SMORPH and SHALSTAB models similarly under-predict the percent area of hazard map

units determined to be of moderate and/or high failure potential, by an average 6% and 5%,
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respectively. Using the Wilcoxon  rank-sum statistic for two populations, as described

previously, the computed test statistic proved insignificant at the 95% confidence level (Table

9),  implying that the models perform similarly in predicting areas of relatively low hazard

potential inside mapped landslide-hazard areas.

Whether the observed discrepancies between model predictions and hazard-zonation

map units represent true ” Type 1 errors” in the statistical sense is debatable, given that three of

the four hazard-zonation maps (i.e., Jordan-Boulder, Hazel, and Sol Due River) were drawn

using broad map polygons (e.g., Figure 3B,  lower left) that incorporated both unstable slopes

and intervening stable ground. In the Jordan-Boulder basin, for example, hazard-zonation units

intentionally were drawn to include potential landslide sites (e.g., hollows, groundwater seeps,

inner gorges) and intervening divergent topography (e.g., ridge lines) because it was not

possible to delineate them on 1:24,000  scale maps (Coho, 1997). Hence, the GIS-based

models might discriminate, more accurately than the hazard-zonation maps, the topographic

features potentially influencing shallow landslide initiation in finely dissected terrain.

As a test of the influence of mapping resolution on hazard zonation maps, we

intentionally created the hazard-zonation map units in the East Fork Lewis test basin with as

fine a resolution as possible on 1:24,000  scale maps. This allowed us to compare model

predictions with two different scales of hazard-map resolution (e.g., the Jordan-Boulder basin,

Figure 38,  lower left; and East Fork Lewis basin, Figure 3A,,lower  left). Type I “errors”

generated by SMORPH and SHALSTAB decreased substantially, from 14% and 9% for the

Jordan-Boulder basin, respectively, to 1% and 2% for the East Fork Lewis basin (Table 10;

values normalized as described previously). One implication of this result is that GIS-based

model predictions of slope-stability potential could be used advantageously by analysts in

drawing hazard-zonation maps with higher resolution than demonstrated, for example, in Figure

4 6



313.

Table 11 shows the distribution of Type II errors generated by the SMORPH and

SHALSTAB models, based on comparisons with hazard-zonation maps. As in Table 10, error

values are given as normalized relative percent areas. Calculated error estimates for each of

the test basins suggest that SMORPH over-predicts the percent area of hazard-zonation map

units designated as high landslide potential, by an average amount slightly less than predicted

by SHALSTAB (i.e., 3% versus 7%, respectively). In all four test basins, SHALSTAB tended to

over-predict, by a factor of two greater than SMORPH, the spatial distribution of high-hazard

areas observed on hazard-zonation maps, as depicted in Figure IO. With respect to the East

Fork Lewis basin, which we believe was mapped fairly carefully for the purposes of this study,

some amount of mo’del  over-prediction (i.e., 16% for SMORPH and 43% for SHALSTAB) might

be true Type II errors. That is, the models likely do over-predict observed spatial patterns of

slope-stability potential, as can be discerned from observed spatial patterns of existing and

potential landslides. Particularly in the case of SHALSTAB, however, some portion of this over-

prediction might be an artifact of the manner in which hazard-potential criteria were derived

(i.e., the Q, - slope stability classes assigned by precipitation rules to be included in the high-

hazard management designation), as discussed previously with regard to Figure 8.

To evaluate ,the  potential for model use in a management context, we developed a

ranking scheme to cluantify  model performance and a number of other comparative criteria (see

report  section 5.0). We employed a statistical method for ranking models in ‘terms of their

ability to correctly and incorrectly identify known, existing shallow landslides. A numeric value

was assigned to each  of the possible database-intersect outcomes:
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Type of database intersect& ) Assigned value (p)
I

Landslide overlaps with DEM cell coded by model as high hazard 0

Landslide overlaps with DEM cell coded by model as moderate hazard 1

Landslide overlaps with DEM cell coded by model as low hazard 2

For example, an existing landslide was considered to be identified by a particular model if any

superimposed DEM grid cell was coded “high hazard” (p = 0) or “moderate hazard” (p = 1).

The assigned values for all correctly and incorrectly identified landslides in each of the eight test

basins were added to yield a cumulative score for each model, which then was normalized by

the total number of landslides in each basin, Where landslides occurred in areas for which the

soils survey data were missing, the SOILS screen grid cells were given a score of p = 2. These

normalized scores then were added to a score sheet including results of other tested criteria, as

will be described in report section 5.0.

Table 12 shows the results of this ranked test. SHALSTAB gained approximately twice

as many points as SMORPH, reflected in the normalized cumulative scores (i.e., 1.9 versus

0.8, respectively). The SOILS screen received a significantly higher score (i.e., 6.7) than the

other two models, due in part to the partial or total absence of soils-survey data in most test

basins. SHALSTAB received a greater cumulative score than SMORPH, largely due to more

frequent intersections of identified landslide polygons with model-predicted low and moderate

hazards (Figure 11). Some of the discrepancy theoretically could be attributed to our

assignment of management criteria via the precipitation rules, as described with respect to

Figure 8.

At the outset of this study, we posed the following questions with regard to model

performance: (1) How do model predictions of shallow landsliding compare with existing
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landslide inventories and hazard-zonation maps?; and, (2) How do model predictions compare

with respect to each other? In summary, test statistics imply that the SMORPH and

SHALSTAB models predict fairly well the spatial distribution of known existing landslides in the

eight test basins (i.e,.,  error frequency of 3% and 8%, respectively). These models, in general,

also compare favorably with maps of shallow-landslide potential produced via watershed

analyses (i.e., 6% and 5% Type I errors, respectively; and 3% and 7% Type II errors,

respectively). The SOILS screen performed least well, missing 32% of the known existing

landslides (i.e., Type I errors) and providing an incomplete cover of a substantial percentage of

western Washington terrain (e.g., full data coverage existed in only two of the eight test basins).

Test statistics also indicated that the mean differences in predictive model capability between

the SOILS screen and either model were statistically significant, whereas the mean differences

between SMORPH and SHALSTAB were marginally significant statistically. Hence, we

conclude that the SOILS screen is comparatively less accurate and certainly less complete than

the two tested models. While the average differences in predictive capability of SMORPH and

SHALSTAB were not great, the ,former  model tended to produce slightly fewer Type I and II

errors. Contingent on the appropriateness of the precipitation-rule algorithm used to calibrate

the SHALSTAB model, we conclude that SMORPH is slightly more accurate than SHALSTAB in

predicting existing and potential landslides as represented in our updated landslide-inventory

and hazard-zonation-map databases.

4.2 Method limitations

The purpose of this study component was to evaluate the potential constraints placed

on management use of each tested model, by: (1) the nature of the key assumptions used to

create the model; (2) the type and amount of data required as model input; and, (3) model
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sensitivity to changes in input parameters or variabies. Limitations on model applications

resulting from changes in terrain characteristics (i.e., geographic limitations) are discussed in

paper section 4.3.

As discussed previously, the principal assumption made by all three models is that

topographic controls dominate the spatial distribution of shallow landsliding. The relatively

small errors incurred by SHALSTAB and SMORPH in predicting known shallow-landslide

occurrences (i.e., 8% and 3%, respectively; Table 8) and potential unstable slopes (i.e., <IO%

and <6%, respectively; Tables 10 and 11) suggest that this assumption is quite reasonable,

because both models on average reproduce fairly faithfully the spatial distribution of unstable

slopes as specified in field-derived inventories and hazard-potential maps. Furthermore, the

slightly stronger performance of the SMORPH model, in terms of predictive capability, implies

that topographic controls are a dominant factor in promoting shallow failures and that inclusion

in the model algorithms of other key influencing factors (e.g., soil properties, hydrology,

vegetation) might not improve model performance, at least with regard to predicting the spatial

distribution of shallow landslides in western Washington and similar terrains with maritime

climates.

The relatively simplistic SMORPH model offers some advantages in a management

context because it yields results that are comparable to the more sophisticated SHALSTAB

model, without having to calibrate input variables (e.g., soil and hydrology properties) with off-

site data or needing to collect additional data to run the model. In addition, a simplistic model

with fewer data-input requirements contains less potential for Type I and II model errors

associated with inaccurate characterizations of the spatial and temporal distributions of input

variables. The SMORPH model, on the other hand, might lose substantial predictive capability

in terrain where the topographic factors of hillslope gradient and curvature serve less well as
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proxies for the other key influencing parameters. Models like SHALSTAB, which can be

expanded and refined to include algorithms addressing spatial and/or temporal variabilities of

soil and hydrologic Factors, might be more appropriate in situations where landslide processes

are not governed primarily by topographic forcing of soil- and water- mass fluxes. In its present

form, however, the :SHALSTAB  model uses constant values for soil and hydrologic variables as

placeholders for as-,yet-undeveloped  algorithms that would address problems of spatial and

temporal variability. Hence, we conclude that the SHALSTAB model needs to be developed

further before testing the hypothesis that factors other than topography might shape the spatial

distribution of landslides.

For the test basins in which the soils-data coverage was complete (i.e., Sol Due,  Morton,

and Chehalir Headwaters), the SOILS screen incurred the largest error in  predicting known

landslides (30%; see Table 8). This result suggests that basing shallow-landslide prediction on

hillslope gradient and soil stability ratings generated by state soil surveys is less accurate and

effective. Moreover, we suspect that the use in the SOILS algorithm of gradient, rather than

gradient and curvature, contributes primarily to the greater inaccuracy of this method. The

assumption of gradient and curvature as the primary landslide-forcing factors in western

Washington is supported by the demonstrably better predictive capabilities of SMORPH and

SHALSTAB. Hence, we believe that the SOILS method would be improved substantially by

incorporating topographic curvature in the computational algorithm.

Using SMORPH or SHALSTAB in a management context also is affected by the

accessibility of data required as input to run the models. The SOILS screen cannot be adjusted

to calibrate output with new or more accurate data, without recreating the GIS layer. Table 13

lists: (1) the required input variables; (2) their default values as set internally in the models; (3)

the typical sources of data available to the user in modifying default values without additional
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fieldwork or analysis; and, (4) the relative ease in collecting data when values in the literature .

are inappropriate for the watershed of interest or watershed-specific data are nonexistent. For

the purposes of comparison, each model was assigned a score reflecting the number of

variables and the relative ease in collecting data from a given watershed to adjust the default

values assigned to each variable. These scores are used in report section 5.0 to assess, in

part, the management applicability of each model. Although the SOILS screen received zero

points in this scheme, the score was adjusted later to reflect the relative drawback in using a

method that cannot be adjusted to accommodate more accurate information on site or

watershed physical variables.

As described in report section 2.2, the SMORPH model requires that slope-stability

classes be set on the basis of mapped landslide densities (e.g., a high hazard rating

corresponds to slope units in which the greatest landslide number have been measured per unit

basin area), which can be ascertained from landslide inventones. Hence, where landslide

inventories and/or hazard-zonation maps exist, the model can be calibrated without additional

analysis or field work. In addition, management criteria (i.e.,  low, moderate, and high hazard-

potential ratings) are known a priori  because they are specified in, or can be derived, from

watershed-analysis products. The greatest utility of this model lies in extrapolating from

watersheds in which inventories have been compiled to areas with similar physical

characteristics and no existing landslide databases. The limitations of this method are that it

depends on the quality of the landslide database and the appropriateness of data extrapolation

to basins where little physical data exist for verifying model predictions of potential landslide

densities, Also, as mentioned previously, the simplicity of the model can be a detriment where

topographic controls are sub- or co-dominant to other hillslope processes.

As can be seen in Table 13. the SHALSTAB model would require the greatest amount of
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literature and/or field analysis should the user decide to use values for input variables other

than the defaults set internally in the model. Employing values from the literature can be

problematic, given that little data exist on key soil input variables in western Washington

watersheds. Montgomery et al. (1998),  for example, use measured values obtained from a

small catchment in coastal Oregon, in which the local geology and precipitation regime are not

representative of all of western Washington. This model is limited, as in SMORPH, by the

appropriateness of data extrapolation (e.g., from coastal Oregon to western Washington) and

the quality of landslide inventories if model calibrations are performed using inventory data.

Montgomery and Dietrich  (1994) currently do not provide algorithms for addressing spatial and

temporal variability in input parameters, nor are there standard methods for designing field

sampling strategies and determining a representative value for an input variable if field

measurements yielcl  a wide range of values. It is possible computationally to run the model for

discrete portions of a watershed which contain relatively homogeneous parent materials. Such

an approach, however, might be prohibitively expensive or labor-intensive for landscape or

regional managemeint  applications. Consequently, published uses of SHALSTAB to date (e.g.,

Montgomery et al., 1998) have employed the default values specified in Table 13.

An additional1  limitation of the SHALSTAB model in the management arena, as alluded

to by the model autliors  (Montgomery and Dietrich, 1994),  is the current lack of a formula for

converting model output (i.e., critical rainfall (mm/day) necessary to initiate shallow landsliding)

to management crit’eria  (i.e., low, moderate, and high “hazard” potential). As described in

report section 3.3, we chose an approach that utilized existing data and similar units of

measure, This method also circumvented needs for additional fieldwork or rnanipulations of

landslide inventories to back-calculate appropriate values for input variables, the latter of which

appears to require some field effort as well. Our approach, however, might need to be replaced
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or refined as others begin to work on the problem and find more robust solutions.

As a measure of model sensitivity to input-parameter variability, we ran the SMORPH

and SHALSTAB programs for a range of input values. This test did not include the SOILS

screen because of its non-adjustability. Table 14 shows the results of modifying the threshold

gradient classes in the SMORPH model (Table 14A),  and using the range of default values for

effective cohesion and phi angles given in the SHALSTAB model (Table 148). These tables

were compiled using the methods employed in Table 12, in which database intersections (i.e.,

landslide polygons from the inventory database and model predictions of slope stability for each

DEM grid cell) were assigned a value depending on their agreement (p = 0 for a high-hazard

DEM cell overlying a landslide polygon and p = 1 for a moderate-hazard cell overlying a

landslide polygon) or disagreement (p = 2 for no match). As described for Table 12. the

cumulative score for each test basin was normalized by the number of existing landslides, and

the normalized scores for all eight basins were added to yield a total score for each model. The

higher the score for each incremental increase in the magnitude of an input variable, the greater

the number of known existing landslides incorrectly identified by the model (i.e., Type I errors).

This technique provided a quantitative means for evaluating model predictions of slope-stability

potential with changing values of the input variables.

For each model, the values of the input variables were adjusted between those

calibrated to yield model predictions most closely resembling the landslide inventory and

minimum values at which the hillslopes were predicted to be entirely stable (Le.,  no potential

landslides). For the SMORPH model, this involved increasing the threshold gradients in each

of the low, moderate, and high landslide-hazard potential categories until the model predicted

that all watershed slopes would be fully stable. This was accomplished by shifting the slope

hazard-potential classes calibrated ,from  the landslide inventory along the horizontal plane of
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the slope matrix (Table 15). For the SHALSTAB model, the effective cohesion was increased’

from c’ = 0 kN/m2 to c’ = 8 kN/m2,  at which point all watershed slopes were predicted to be

entirely stable.

Tables 14A (demonstrates for the SMORPH model that, as the gradient thresholds

increase for each of the hazard-potential categories (i.e., low, moderate, high), the frequency of

Type I model errors increases correspondingly (i.e., database intersections assigned two points

in the ranking scheme).  The percent change (A%) in assigned points between applying the

calibrated slope matrix (i.e.,  Step 0) and adjusting the matrix so that all slopes are predicted to

be stable (i.e., Step -)  is A% = 0.04, when averaged over all eight basins. Likewise, Type I

errors produced by the SHALSTAB model occur more frequently with increasing magnitudes of

effective cohesion (Table 148). For the SHALSTAB model, the percent change averaged over

eight test basins is ‘1%  = 0.09, when comparing model default options c’ = 2 kN/m2 and c’ = 8

kN/m’,  where @I  = 33” is held constant. The results for the default option of c’ = 15 kN/m2 and QI

= 33” are not shown, given that: all watershed slopes were predicted to be fully stable at

effective cohesions of c’ > 5 kN/m*.

The percent change with increasing values of the input variables for each model was

compared graphically by scaling the y-axis of a SMORPH plot of gradient-threshold class

boundaries (i.e., Steps 24, 47, 70, and 93) versus cumulative percent change, by the y-axis of a

SHALSTAB plot of effective cohesions (i.e., c’ = 2. 5, 8 kN/m2)  versus cumulative percent

change (Figure 12),  given regular increments of increasing gradient and cohesion along the

respective x-axes. ‘This permitted a visual comparison of the relative sensitivity of each model

to changes in the magnitudes of input variables, as reflected in the incremental increases in the

number of points assigned to correct (p = 0,l)  and incorrect (p = 2) grid-ceil intersections.

Figure 12 shows that the SHALSTAB model is somewhat more sensitive to increases in the
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value of effective cohesion than is SMORPH to increases in the gradient threshold at which grid

cells are predicted to have a low hazard potential (i.e., Type I model errors). That is, for an

incremental increase of c’ = 3 kN/m’in  the SHALSTAB model and gradient S = 23% in the

SMORPH model, the former predicts a relatively greater percent change in the number of Type

I errors than does the latter. Hence, we conclude that SHALSTAB is relatively more sensitive to

changes in input variables than is SMORPH, although both models can produce erroneous

results with inappropriately chosen values of the input variables.

Figure 13 shows, for the Morton test basin, the Q, classes versus the cumulative

percent area predicted by SHALSTAB to be unstable, for the a range of default effective-

cohesion values (Le.,  c’ = 2. 5. 8 kN/m’).  The curve represented by star symbols corresponds

to the default input values of c’ = 0 kN/mZ  and @ = 45”. This figure also depicts the significant

variation in the number of predicted landslides with increasing effective cohesion. As

summarized by Montgomery et al. (,1998),  existing literature regarding the influence of root

strength on soil mobility suggests that c’ = 2 kNlm2 is appropriate for clearcut  slopes with

decaying tree stumps and c’ = 8 kN/m’  is more representative of mature, hardwood-dominated

forests or younger conifer stands. We found from model tests in the Morton watershed, for

example, that effective cohesions of c’ 2  8 kN/m2  led to model predictions of fully stable slopes

for any critical rainfall of Q, < 400 mm/day (16 in/day), which is twice the magnitude of a IOO-

year, 24-hour storm event.

This rainfall amount is greater than i:he  probable maximum precipitation computed for the

Morton area (N. Wolff, WDNR. pers comm.),  which suggests that cohesions of c’ 2  8 kN/m’,

presumably characteristic of forested conditions, yield unrealistic model results when used as

input values.

Hence, the value of c’ for which the SHALSTAB model predicts roughly the same spatial
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distribution of existing landslides is that corresponding to a clearcut  watershed. None of the

eight tested watersheds is entirely clearcut. Using a value of c’ more representative of partially

or fully forested conditions, however, would have resulted in a significantly higher percentage of

Type I model errors, including omission from model predictions of landslides known to have

occurred in mature, previously unharvested stands (Le., in portions of the Middle Hoh test

basin). This problem might be resolved by running the model for discrete forest-age-class units

with c’ chosen separately for each unit, We did not explore this possibility due to study time

constraints.

The SHALSTAB model also appears to be quite sensitive to variation in the input value

of the internal friction angle. We ran the model for the cases c’ = 2 kN/m*,  I$ = 33” and c’ =

2kN/m2,  I$ = 45”. Increasing the phi angle by 12 degrees resulted in a decrease of 89% in the

area predicted by the model to be highly unstable (e.g., rIl,  classes 1 through 3 for the Upper

East Fork Lewis basin).

Hence, we conclude that both SHALSTAB and SMORPH are relatively sensitive to the

magnitudes of their respective input variables, and that SHALSTAB is measurably more

sensitive than SMORPH. We suggest that SHALSTAB model users employ conservative

estimates of @ and c’, in the absence of reliable field measurements or proven methods for

estimating appropriate values. Similar to Montgomery et al. (1998)  we found that the

combination of c’ = 2 kN/m*  and @  = 33” yielded predicted landslide spatial distributions most

closely resembling measured landslide distributions in all watersheds tested by this study. In

addition, SMORPH modelers should calibrate the slope matrix designations of landslide hazard

for each gradient class using accurate landslide inventories, wherever possible, to reduce the

potential for Type I model errors.



4.3 Geographic applicability

To investigate the ability of each model to correctly predict landslides in different

western Washington terrains, we separated the eight test basins into six categories pertaining

to major geomorphic provinces: continental glaciated terrain (Hazel), Cascades volcanic

complex (Morton, Upper East Fork Lewis River), Northwestern Cascades system (Jordan-

Boulder, North Fork Stilliguamish River), Olympic core rocks (Sol Due River), Western Olympic

Assemblage (Middle Hoh River), and Eocene volcaniclastics (Chehalis Headwaters) (see

Figure 1). We rated each model in by the number of Type I errors it produced in each

geomorphic province (Table 8, right-hand column).

As described in sections 4.1 and 4.2, the Soils screen performed least well overall

because of the lack of soils-survey data in six of the eight test basins and the inability of the

method to discriminate slope curvature (i.e., 32% Type I errors). Of the test basins with

complete or nearly complete data, the screen yielded the greatest percent of Type I errors in

the Eocene-volcaniclastics (32% of the test basins) and Cascades-volcanics provinces (48% of

the test basins), both regions of which incorporate most of southwestern Washington. Likely

reasons are that the method could not detect relatively steeper, convergent features (e.g., inner

gorges) inside broader, gentle slope areas, particularly in areas of lower topographic relief like

the Chehalis Headwaters basin in which a substantial fraction of the existing failures were

found. As described in report section 4.1, the broad inclusion of slopes in soil hazard-potential

polygons resulted in fewer Type I errors in some test basins with the SOILS screen than with

SHALSTAB. although the results still indicated substantial predictive errors in certain terrains

(Le., the Hazel test basin).

The SHALSTAB model performed least well in the continental-glaciated terrain (e.g.,

32% Type I errors in the Hazel test lbasin); Montgomery et al. (1998) also concluded in their test
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’that the model predicted landslides least well in thick glacial deposits. The percent of Type I

model errors increased by an  average 69% over those computed for the other five provinces.

The model also produced approximately 60% more Type I errors than the SMORPH model in

the Olympic terrains, as discussed in report section 4.1.

The SMORPH model performed least well in the western Olympic test basin (7%) and,

surprisingly, misidentified only 1% of the existing landslides in the continental-glaciated terrain.

As discussed in report section 4.1, it appears that the Arc/lnfo’m  GRID tool is capable of

discerning variations in gradient and slope curvature on the order of one DEM grid cell, allowing

the model to’detect 1OOm’  or larger shallow landslides superimposed on deep-seated failures.

Thus, it appears that SMORPH might be more capable of identifying landslide features in

glaciated terrain, although a larger sample of test basins would be required to properly evaluate

this theory.

We conclude from this test that SHALSTAB and SMORPH could reasonably be

employed in most western Washington terrains to predict shallow landslides. The SHALSTAB

model appears to work least well in continental-glaciated terrain, while preliminary results

suggest that SMORPH might perform substantially better than SHALSTAB in glaciated

topography dominated by deep-seated failures. The SOILS screen runs a distant third in most

terrains because of ,the  incomplete nature of the GIS coverage and the relatively greater

percent of Type I model errors.

4.4 Technical criteria

We asked five general questions with respect to technical aspects of each method: (1)

How long does it take to run the model program?; (2) How much training is required?; (3) How

much computer space is required by the model programs?; and, (4) How easy would it be for
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the user to modify the model? These questions would be important from a practical perspectiie

and could influence how each model would be used in a management context.

Prior to running any GIS-model program, it is critical that someone familiar with

computing systems and Arc/Info’” programming language verifies that the program is running

correctly. The optimum method for double-checking program execution is to compare standard

(i.e. default) model output with output obtained for the same geographic area from the model

authors or from existing databases produced by the model on the WDNR-GIS system. None of

the tested models has been refined sufficiently to document, internally or otherwise, all the

known technical complexities of loading and running a program on a particular operating

system, so it is important to test program execution.

The purpose of evaluating computer processing time was to provide users with an

estimate of the average time necessary to create slope stability screens, particularly when

working at a landscape or regional scale. The SMORPH model program runs about five times

faster than that for SHALSTAB. On average, for 30-m. DEMs, the SMORPH program takes

three minutes to run for a WAU (i.e., an area typically less than 200 kmz),  while it takes 18

minutes to run the SHALSTAB program. Run time increases approximately three-fold when

model programs are executed using 10-m. DEMs. If the user were to employ 10-m. DEMs  in

creating a slope stability screen of all western Washington WAUs,  for example, the SMORPH

program would require roughly 90 hours of computer time, while it would take well over 400

hours of computer time to process ,the  SHALSTAB program. The SOILS screen exists already;

therefore, computer use is limited to the time it takes to create a map.

A certain level of training is required to fully understand and use the model output,

regardless of which model is being employed as a slope stability screen. Only very basic

computer skills are necessary, however, to run model programs and create maps of the
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predicted slope-stability distributions, assuming that DEMs  exist for the area of interest. The

user should know how to obtain access (i.e., “log in”), navigate, execute basic tile commands,

and run the model program on the computer system. However, a basic geotechnical

understanding of landslide processes is necessary to calibrate the SHALSTAB and SMORPH

models, and the SHALSTAB model additionally requires an ability to interpret and apply soil-

property and hydrologic (e.g., precipitation) data.

Furthermore, the SOILS screen and SMORPH model give results of slope-stability

analyses explicitly irl  terms of management criteria currently used in Washington (i.e., low,

moderate, and high landslide potential), so that interpretation of output is straight-fotward if the

user is familiar with ,their  definitions. The default criteria used in SMORPH (Table 6) might need

to be calibrated with landslide inventories from the basin of interest, or from an analogous

watershed, and some training might be necessary in using the calibration algorithm. The

current version of SHALSTAB provides no guidance for translating output to management

criteria or for calibrating input variables to local area conditions. Consequently, more training

and background knowledge are necessary for running the SHALSTAB program and interpreting

model results.

Given that DEM data arc! the only absolute requirement for all three models, data input

requirements can be relatively straightforward. SHALSTAB and SMORPH provide default

values for soil and slope properties, respectively, allowing the user to run the computer

programs without first having to calibrate the models. We strongly recommend, however, that

input values be calibrated to achieve greater predictive accuracy.

High DEM resolution is lkey to producing reasonable results with SHALSTAB and

SMORPH. The SOILS screen, in contrast, is unaffected by DEM resolution because it was

derived from static data (i.e., fixed values for hillslope gradients and soil properties). DEMs  with
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10-m. resolution generate more accurate results than 30-m. data because they better represent

the true topographic surface. Figure 14 compares the frequency of predicted landslides in the

Jordan-Boulder, North Fork Stilliguamish, and Hazel test basins, using 10-m. versus 30-m.

DEMs. Results of tests using the SMORPH and SHALSTAB programs indicate that, when IO-

m.  DEMs  are used, both models predict relatively more failures in the unstable-slope classes

(i.e., SMORPH slope-stability rating class 3 and SHALSTAB critical-rainfall classes 1,  2, and 3;

see Figure 14). It should be noted, however, that this relatively greater number of landslides

predicted using 10-m. DEMs  is actually more representative of measured spatial landslide

distributions in these basins. That is, employing 30-m. DEMs  results in a higher percent of

Type II model errors. On average, use of DEMs  with 10-m. rather than 30-m. resolution leads

to a 94% improvement in the predictive accuracy of the SMORPH model and 60% improvement

in SHALSTAB results. Hence, it is recommended that 10-m. resolution data be used whenever

possible.

The SMORPH model requires the least amount of storage space on a computer system.

It produces grid data, which use less storage space than GIS coverages like the SOILS screen.

The SHALSTAB model also generates grid data; however, it produces one grid for each of the

default output options (i.e., one grid for each of the preset combinations of c’ and I$).

Additionally, SHALSTAB creates several other grids that typically are not used in a

management context, although an experienced programmer can modify the code to circumvent

creating these data layers. For geographic areas smaller than a typical WAU, data storage

requirements do not pose problems for a computer with Arc/Info’”  software, as a single grid or

small set of grids does not take up much disk space. Data-storage problems are substantially

greater for some systems (e.g., personal computers) when areas larger than the size of a

typical WAU are used.
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All tested models can be run on a personal computer with Arc/info”” software. ~The ’

SHALSTAB model requires that the computer also have Fortran  and C program executability

for running subroutines that: (1) remove artificial topographic convergences  occasionally

created by the DEMs;  and, (2) calculate upslope  contributing areas to each grid cell for the

hydrologic component of the model. Only the SOILS screen can be accessed on a personal

computer with non-Arc/Inform  software and no additional programming. Both SHALSTAB and

SMORPH would require additional programming to make them compatible with non-Arcllnfom

software.

User access to each of the three models would be improved by additional program or

method documentation. SMORPH and SHALSTAB programs would benefit from more internal

documentation, to assist future generations of programmers in adjusting the input variables.

Some program documentation was developed, as part of this study, for both the SHALSTAB

and SMORPH models. This on-line help consists of ‘read.me’  files (Le., text files that assist

with program executions) and internal documentation (i.e., comment lines withtn  the program to

assist the Arc/Info””  Iprogrammer  in adjusting or calibrating the model). We also developed

programs for viewing the model output and creating simple maps from the model data, and we

created a menu-driven system for adjusting SMORPH slope criteria. A similar tool would

enhance substantially the usability of the SHALSTAB program. A menu-driven system

eliminates the need for a programmer to adjust the program input variables, and it serves. to

remind the user that input variables generally need to be calibrated for the area of interest.

The SOILS screen, on the other hand, does not need internal documentation because it

exists as a compiled cover, rather than an executable program. Metadata (i.e., data about the

data) exist for the SOILS screen, but little documentation exists regarding the applicability of the

WDNR-GIS SOILS layer to different management scenarios. The SOILS screen also lacks any
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accompanying written discussion of the rationale for assigning~  management criteria to certain.

combinations of soil types and hillslope gradients. This information could assist the user in

interpreting the accuracy of the slope-stability predictions, especially when the area of interest

falls outside the specified soil-gradient class.

5.0 Discussion and Conclusions Regarding Model Applications

The primary purpose of this study was to evaluate in a management context the use of

three currently available methods for predicting shallow landslides. In particular, our goal was

to compare the current GIS slope-stability cover, used in Washington regulatory and

management practices, with other, potentially more reliable, GIS-based models. Toward that

end, we developed a rating scheme to measure the overall performance and applicability of the

three tested methods with respect to the scientific and technical criteria discussed in this paper.

The rating scheme was formulated so that each model would be scored for each

identified criterion based on either of the following: (1) statistical values summarized elsewhere

in this paper; or, (2) assigned points representing qualitative answers to questions for which no

quantitative measures could be found. The latter were expressed as “yes” (usually assigned

zero points; p = 0) or “no” (p = 1) questions. The lowest cumulative score reflects the model

that generates unstable-slope predictions most comparable with existing landslide databases

(i.e., fewer Type I model errors) and would be the most readily applicable in a management

context.

Table 16 shows the results of this rating exercise, and Table 17 lists, for each criterion,

the rationale for the point assignment. The purpose of the numerical ranking is to describe

relative performance; the magnitudes of the total scores, therefore, have no real significance for

measuring how much better one model performs than the other. These results suggest that the
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SMORPH model might offer more advantages in a management or regulatory context than the

SOILS screen and the current version of SHALSTAB (i.e., with the values of soil-propetiy  and

hydrologic input parameters held constant).

In general, the reasons for the relatively higher rating (Table 16) of the SMORPH model

are:

(1) SMORPH generated spatial predictions of shallow landslides that most closely resembled

the measured densities of known existing landslides (i.e., landslide inventory databases)

and the field-derived maps of landslide hazard potential (Tables 8, 10, and 11).

Specifically, ,the  SMORPH model, on average, yielded fewer Type I and II model errors,

even in continental-glaciated terrain;

(2) SMORPH contains fewer input variables than SHALSTAB; consequently, there is less

potential for ‘Type I and II model errors associated with using input values that are

unrepresentative of the study area. In addition, the input variables in SMORPH (i.e.,

gradient and slope curvature) appeared in general to be less sensitive to variation than

SHALSTAB input variables (i.e., effective cohesion and internal friction angles; see

Figure 12). The predictive capability of the SOILS screen likely is limited by the absence

of a slope-curvature parameter in the computational algorithm, and the GIS cover

cannot be adjusted to reflect hillslope gradients and soil properties outside the specified

general categories.

(3) The GIS cover generated with SMORPH uses management criteria (i.e., low, moderate, and

high landslide-potential ratings) to signify classes of slope instability, whereas the

SHALSTAB model outputs values, in terms of critical rainfall required to initiate

landsliding, that require geomorphic interpretation to be applied in a management

capacity. The SHALSTAB model currently does not provide a mechanism for converting
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from critical rainfall units to management criteria. Hence, the SMORPH models  is more

readily applicable in the current management decision-making framework in

Washington.

(4) SMORPH runs approximately 80% faster than SHALSTAB on a computer workstation,

which might be important to managers with limited computer resources and large data

requirements (i.e., for creating regional screens of slope stability). SMORPH also

requires about five times less data-storage volume than SHALSTAB and several times

less storage volume than the SOILS screen. And;

(5) Relatively less training is necessary to instruct users on executing SMORPH programs and

interpreting model results. The SMORPH model also requires comparatively less

assistance from technical specialists in calibrating input variables (i.e., adjusting the

slope matrix with landslide-inventory data) and interpreting model results. The

SHALSTAB model requires more data collection (e.g., to properly characterize soil

properties and calibrate the model for the precipitation regime in the area of interest)

and interpretation of model predictions, which are accomplished more easily by users

with some background in geomorphology, geoengineering, soil science, and/or

hydrology.

Hence, the SMORPH model might fill the near-term needs of resource managers and

regulators for a ready-to-use model that can create a landscape or regional shallow-landslide

screen.

The SMORPH model potentially offers some disadvantages as well. Together with the

SOILS screen and the current version of SHALSTAB, this model could lose some predictive

capability in terrain where topographic controls on shallow landslide initiation are secondary to

other destabilizing factors (e.g., snow avalanching, slumping along earthflow margins, ground
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subsidence, erosion of glacial deposits). The modei  would have to be modified substantially to

include algorithms for explicitly treating variables other than slope gradient and form.

Alternatively, the SHALSTAB model, using the precipitation-rule method for converting

model output to management criteria, yields results that are fairly comparable with those of the

SMORPH model and existing landslide inventories. This model potentially could be more

versatile than SMORPH or the SOILS screen, because it contains placeholders for algorithms

that would address explicitly the spatial and/or temporal variability of soil and hydrologic factors.

In addition, future comparisons of the SMORPH model and a more sophisticated SHALSTAB

model might resolve whether explicit treatments of soil and hydrologic properties (e.g.,

SHALSTAB) yield substantially better predictions of slope-stability potential than do more

sirnple models in which topographic parameters serve as proxies for these key variables (e.g.,

SMORPH). Test statistics from ,this  study suggest that the current version of the SHALSTAB

model performs no better than SMORPH, even though it includes several key variables (i.e.,

soil transmissivity. depth, cohesion, bulk density, and internal friction angle), albeit expressed

as constants. This result could be attributed to a number of factors, including the possibility that

soil properties are of secondary importance compared with topographic factors, and that

including them explicitly in predictive models is less critical than accurately simulating fine-scale

variations in slope topography.

The SOILS screen is relatively more “user-friendly” than the other two models because it

is delivered to the user as a pre-compiled GIS cover that requires no calibration and gives

results in terms of management criteria that can be incorporated readily in the existing

regulatory and forest-management decision-making processes. Nonetheless, it received a

comparatively less favorable score than SMORPH and SHALSTAB because it yielded

significantly more Type I errors (i.e., incorrectly identified landslides). In addition, the SOILS
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screen contains large gaps in geographic coverage because digital soils-survey data are

lacking on some portions of Washington, especially on federal lands. Furthermore, the digital

soils layer maintained by the federal government (e.g., USDA Forest Service) can be

incomplete, as was encountered in this study.

Incompleteness aside, the relative inaccuracy of the SOILS screen puts it at a

disadvantage when compared with the more accurate SMORPH and SHALSTAB models.

Study results imply that the SOILS GIS cover, maintained by the state for management and

regulatory applications, should be replaced by one created with either predictive model. Given

that the SHALSTAB and SMORPH models have been developed and tested in maritime

climates of the Pacific Northwest, they should be similarly analyzed for precipitation regimes

and terrains more typical of the continental interior, prior to their use east of the Cascades

Range or elsewhere.

A number of interesting questions have arisen during this study regarding the technical

merits of each GIS-based model, as well as the quality and applicability of landslide inventories

and other databases used to calibrate the models. These include such issues as the relative

need for including spatial variability of soil properties as elements of GIS-based models

designed to be used in terrain where topographic controls dominate the spatial distribution of

shallow landslides. Given that the SHALSTAB and SMORPH models, as currently configured,

do not explicitly treat the stochastic nature of key variables, yet they predict relatively well the

known distribution of landslide potential, attests to the real possibility that it might not be

necessary to include spatial and ternporal variability in the model frameworks. Furthermore, the

relative agreement between SMORPH model predictions and observed landslides suggests that

including soil properties in the model equation might not even be necessary for producing a

reliable, preliminary landslide-screening tool designed for management applications. The same
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argument could be made for SHALSTAB, since soilvariables are held constant and the model’

in essence functions like SMORPH in discriminating landslide potential on the basis of

topographic factors.

Our study also motivates the need for continued discussion of appropriate ways to

parameterize model predictions of landslide potential in terms of management decision-making

criteria. We have identified a number of alternatives for converting model predictions of

landslide potential to decision criteria. All of them, however, rely on the current management

formulation of what constitutes “hazard” and “risk”, whereby hillslope processes are treated

deterministically (e.g., the analysis of “hazard” does not necessarily take into account the

history of landslide processes predating recent management activities). It may be that GIS-

based topographic rnodels more accurately reflect the full spatial and temporal distribution of

potential unstable slopes than do landslide databases generated during watershed analyses,

because the former are measuring landslide potential based on landform  characteristics that

largely existed prior to 20th. century land management, while the latter are based heavily on

aerial-photo interpretation and, hence, provide only a contemporary measure of landslide rates.

GIS-based models, therefore, could be useful in helping to redefine the way in which hazard-

zonation maps typically are generated.
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Table I. Criteria for determining slope stability from the SOILS data

- Soils criteria for slope stability ratings Mak%ingI I

Very Unstable maD  units  with &Des  oreater  than 30% I I

map units  with slopes up to 30%. where the soil phase at 30.65% is also rated stable

Table 2. Matrix relating slope rcurvature  and gradient to shallow landslide potential, as used in the
SMORPH model. The number and distribution of slope gradient classes (i.e., A - E) are set for a
specific geomorphic unit with the aid of landslide inventories or slope stability analyses.

Table 3. Critical rainfall classes (Q,) designated by the SHALSTAB model.

Rainfall amount needed
to induce failure

ZOO-100 millimeters par day

greater than 400 millimeters per day

Unconditionally stable

Stable al this cohesion
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Table 4. Physical and geologic characteristics of test basins

Test Basin

Jordan-Boulder

North Fork
Stillaguamish
River

Haze!

Sol Due River

Middle Hoh
River

Morton

Chehalis Coast Range
Headwaters (Willapa Hills)

Upper East Fork Central Cascades Eocene to Recent andesitic
Lewis River Range volcanics with igneous intrusions

I

[

Physiographic
Area

North Cascades
Range

North Cascades
Range

western Rank of
Cascades Range -
Puget Lowlands

northern Olympic
Peninsula

western Olympic
Peninsula

Central Cascades
Range

I

t

Geologic Province Area

(km* and acres)

Northwest Cascades Metamorphic
Suite; includes meta-quartz diorite,
low-grade schists and phyllites, and
plutonics

Low-grade metamorphosed
sediments, including phyllite and
greenschist

Continental glacial deposits
overlying low-grade
metamorphosed sediments

Crescent Basalt and Olympic Lithic
Assemblage (metamorphosed
marine sediments)

Western Olympic Assemblage;
extensively sheared and
metamorphosed marine sediments

Eocene to Recent andesitic
volcanics

Eocene to Miocene mafic  volcanic
assemblage

133 km*

32,987 ac,

130 km2

32,144 ac.

98  km2

24,209 ac

1 a5 km2

45,674 ac.

331 km2

ai ,679 ac.

aa  km2

21.686 ac

1 a2 km2

45,000 ac.

81 km2

20,016 ac.

I
I

Topographic
Relief

0-N

1941

1504

1528

915

1575

1 1 2 7

ala

1022

Number of
Known.

Landglides

1 5 5

215

1 1 7

101

733

980

1 3 4

a 9

’ Includes identified shallow and deep-seated landslides.
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Table 5. DEM resolution and sources of data for the eight test basins.

Test Basin

North Fork
Stillaguamish
River

Hazel

Sol Due  River

(4 WAUs)

Middle Hoh
River

Morton

(Portions of 2
WAUs)

Chehalis
Headwaters

lJpper  East Fork
Lewis River

Source of
Landslide

inventory Data

WDNR, 1997
.-

Perkins and
Collins (1997);
inventories
created for this
study

-.-

WDNR, 1998
..-

WDNR and
USDA Forest
Service (1996)

-.-

WDNR (in
preparation)

-.-

Murray Pacific
Timber Corp.
(1998)

-.~

Weyerhaeuser
co. (1994);
updated for this
study

-.-

USDA Forest
Service (1997)
and inventories
created for this

study -.-

Hazard-
Zonation Map

Available

Yes

D E M
Resolution

IOm

Percent Basin
with Soils

Layer

6 3 %

No 10m 2 2 %

Yes I 10m I 6 5 %

Yes 30m 95%

No
I

(not yet I
digitized) 1

No

(not available in

30m

IOm

IOm

6 4 %

100%

100%

Yes IOm 2 %
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Table 6. Gradient threshold values (in percent) calculated from landslide databases for inout  to the
SMORPH slope matrix (Table 2) for each test basin. See text for discussion.

Test Basins

Jordan-Boulder

N.F.
Stillaguamish

River

15 40 47 70 m

Hazel 15 I 24 I 47 I 70 I m

Gradient threshold corresponding to “hazard” designations for each curvature class

Low for Low for Low for Moderate for High for all
convex and convex and convex, convex, high slope forms

planar, planar, high for moderate for for planar,
moderate for concave planar, high for concave

concave concave

-Y-j- 45 50 70 -

Morton 11  25 1 55 1 65 1 70 1 m
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Table 7. Precipitation “rules” used to create management criteria for the SHALSTAB model. See text for
discussion.

Jordan-Boulder

1 E.F. Lewis11 6,E:  1 5 I 1,2,3,4  111 123 140
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Table 8. Predictions of known, existing shallow landslides using the three models (SOILS
screen, SMORPH, and SHALSTAB), given as the number of incorrectly identified
landslides (no. missed) per total number of landslides in each basin (see text).

SOILS SlilORPH SHALSTAB
(4 = 33”,  C’ = 2kNlm’)

no.
misse

NIT no.
misse

NIT no.
missed

(N)

W-U

r 40 0.26 0 0.00 5 0.03
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Table 9. Wilcoxon  rank-sum test for two populations, comparing means (p)  of error
distributions generated by the SMORPH and SHALSTAB models (see Type I
error estimates in Table 8 and 10).

Test Criterion
Comparison of Comparison of

SMORPH II) and SOILS (I 1 andvarlame
1 SHALSTh(2)  / SHALSiAB(2)  1

I I I I

W test
statistic

t-t

0.04 0.01

significant at Yes; Yes;
a = 0.05? IA c c12 IJr ’ lb

Hazard-zonation

0.44

No;
PI  = lJ2

No;
I4 = Pz
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Table  10. Type 1 model errors, in which each model predicts that shallow landslides likely do not occur.  whereas field-derived
maps of hazard zonation indicate that there is a moderate to high likelihood of landsliding

11Mass-Wasting Map
Unit Data SMORPH Model SHALSTAB Model

T

IE

T

I‘t

T

!
E

Basin Area
Predicted
with Low (AM

Hazard =p
Rating (km*)

W

Test Basin
Map
Unit
No.’

Map
Unit
No.’

E=
P(A!T)

E=
P(A,K;

0 . 1 4

-?ftj 0 . 0 8

5, 7, 8lordan-Boulder

5, 6,

7, 8

5,  7, 8

0 . 0 8
iazel

Sol  Due River

Jpper East Fork
.ewis  River

1

-
5,  7, a

164.5 (T) 1rotal:

lean: 41.1 0 . 3 7

’ Map unit corresponds to “high” hazard potential as defined by gradient-curvature class (see Table 2)
’ Map unit corresponds to “high” hazard potential as defined by precipitation rules (see Table 7).
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Table 11. Type II model errors, in which each model predicts that shallow landslides likely have a high probability of occurring,
whereas field-derived maps of hazard zonation indicate that there is a low likelihood of landsliding

Jordan-Boulder

0.89 3

’ Map unit corresponds to “low” hazard potential as defined by gradient-curvature class (see Table 2).

* Map unit corresponds to “low” hazard potential as defined by precipitation rules (see Table 7).
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Table 12. Comparison of model performance in correctly and incorrectly predicting
landslide potential. For each model, slope-stability ratings of each DEM grid cell
were compared with the landslide-inventory database. A numerical value was
assigned to each of three possible database-intersection outcomes, as described
in the text.

1 “EtF. 1 155 / 5 1 0.03 I/ 11 1 0.07 I/ 60  1 0.52 /

Headwaters 980
Lewis 8 9
Total: 2524
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Table 13. List of required input variables for each model, their default values as specified in the model, and the data sources
available to calibrate model output for the watershed of interest. The variable is assigned a rating of 1 if the required
data for a specific watershed are relatively easy to obtain without substantial field work, and 2 for the converse.

Method

Relative Ease of Collecting

Default Values
Watershed-Specific Data

input Variable Description
Unite of
Measure

Set in the Data Source Rating Points Percent
Model Assigned Total

Points

I . ^.^

b o u n d a r i e s  s e t threshold values can be a d j u s t e d
ased  on landslide inventories and

forest-soils and experimental
studies (see Montgomery  et al.,
1 9 9 8 .  f o r  r e f e r e n c e s )

(can be estimated

SHALSTAB

soil surveys and isolated site-

ph i internal angle of ifc’=O,then@= 2

NJ) soil friction
d e g r e e s 45”; else f$ = rock-mechanics literature (varies spatially by

3 3 ” r o c k  t y p e )

2
soil bulk density g i v e n  a s

(P,  ) c o n s t a n t
kg/m3 2 0 0 0

soil surveys and isolated site- (spatially and
specific studies temporally

variable)
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Table 14. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input variables
were changed and the predicted shallow-landslide distributions were compared with the existing landslide inventories
according to the point scheme described in the text. A. Total scores for each test basin, shown as cumulative and
normalized by the respective number of landslides, for the SMORPH model when the threshold gradients for low,
moderate, and high landslide-hazard potential are increased (Le.,  shifted laterally along the horizontal slope-matrix plane
as in Table 15). B. Total scores, shown as cumulative and normalized, for the SHALSTAB model when the effective
cohesion (c’) and friction angle (@)  are changed.

A. SMORPH model:

Test
Basin

Jordan-
Boulder

NF Sfilla-
guamish

Hazel

Sol Due

Mid. Hoh

MOltOIl

Chehalis

EF Lewis

TOTAL:

Change in Gradient Thresholds for Low, Moderate, and High Landslide-Potential Designations (see FigureA
Number of Assigned Points (Cumulative and Percent Total)

134 28 0.21 2 5 0.19 7 2 0.54 146 1.09 2 6 6 2.00 0.11

9 8 0 4 9 0.05 7 9 0.08 2 6 0 0.27 7 7 1 0.79 2940 3.00 0.02

8 9 9 0.10 6 0.07 3 2 0.36 88 0.99 176 2.00 0.05

2 5 2 4 2 7 5 0.81 5 3 3 167 1464 5.12 2 9 5 9 9.92 6 6 1 6 21.00 0.04

’ Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing landslides; Step 0) and

maximum values at which the hillslopes are predicted to be fully stable (i.e., Step m).
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Table 14 cont’d. Results of a sensitivity test for the SMORPH and SHALSTAB models. For each model, the values of the input
variables were changed and the predicted shallow-landslide distributions were compared with the existing landslide
inventories according to the point scheme described in the text. B. Total scores, shown as cumulative and
normalized, for the SHALSTAB model when the effective cohesion (c’) and friction angle (I$)  are changed as per
the default values given by the model.

B. SHALSTAB model:

Test
Basin

J o r d a n -
B o u l d e r

NF Stilla-
g u a m i s h

Hazel

Sol Due

Mid. Hoh

EF Lewis

TOTAi:

-l-

I

Change in Values of Effective Cohesion (c’ = kN/m*)  and Friction Angle (@ = degrees)
Number of Assigned Points (Cumulative and Percent Total)

I
No. i c’=Z  /

I I I I I
Norm. / c’ = 0 Norm. / c’=5  1 Norm. I c’=8 I Norm. I Percent i

OFOF ! $=33! $=33 Y&BY&B ! $=45 I y&e! $=45 I y&e ! A=??  !  v.&,e  !  h=??  !  v&e! A=??  !  uap,e !  h=??  !  va,ue !  ‘c.!  ‘c.
Y I- .a  .+ “UY I- .a  .+ “U

S l i d eS l i d e
Y,ange !Y,ange !

ss

1 5 51 5 5 1 11 1 0.070 . 0 7 1 51 5 0.100.10 9090 0.580.58 465465 3.003.00 0.020.02

2 1 5 5 0 0 . 2 3 9 5 0 . 4 4 2 7 8 1 . 2 9 6 4 5 [ 3 . 0 0 0 . 0 8 1

1 1 7 8 4 0 . 7 2 1 1 6 0 . 9 9 1 8 2 1 . 5 6 351 3 . 0 0 0 . 2 4

101 2 6 0 . 2 6 5 6 0 . 5 5 1 5 4 1 . 5 2 3 0 3 3 . 0 0 0 . 0 9

7 3 3 1 7 7 0 . 2 4 2 8 1 0 . 3 8 8 5 1 1 . 1 6 1466 2 . 0 0 0 . 1 2

134 44 0 . 3 3 7 4 0 . 5 5 1 6 7 1 . 2 5 2 6 8 2 . 0 0 0 . 1 7

980 40 0.04 72 0 . 0 7 2 9 4 0 3 . 0 0 2 9 4 0 3 . 0 0 0 . 0 1

89 2 0.02 9 0.10 60 0.67 178 2.00 0 . 0 1

2 5 2 4 4 3 4 1 . 9 1 7 1 8 3 . 1 9 4722 T T . 0 4 6 6 1 6 2 1 . 0 0 0 . 0 9

’ Percent change from preferred values (i.e., those resulting in predictions most similar to the spatial distribution of existing landslides; c’ = 2kN/m2
and $I = 33”) and maximum values at which the hillslopes are predicted to be fully stable (i.e.,  c’ = 8kN/m2 and I$ = 33”).
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Table 15. Adjustment of the SMORPH slope matrix to test the sensitivity of increasing threshold gradients on model predictions of
shallow-landslide potential. Step categories refer to step-wise shifls of the hazard-zonation criteria (i.e., low, moderate,
high) with respect to the designated gradient-threshold classes, for the Olympic Peninsula test basins. L = predicted low
shallow-landslide potential; M = moderate potential; H = high potential.

Step 0: (Calibrated using landslide inventories)

Gradient (%)

0 1 5 2 5 4 7 70 to -

L L L L M

L L L M H

L M H ii H

step 47:

Gradient(%)

1 5 ! 2 5 ! 4 7 7 0 ! 9 0 ! looto-C0”W.x
4

L L L L L L M

planar L L L L L M H

concaw L L L M H H H

step (II:

Slope

I !
Gradient (%)

curvature
0 1 5 ! 2 5 ! 4 7 ! 70 lo -

step 70:

, Slope Gradient (%)

M”WXM”WX
HH

LL LL LL LL LL LL LL MM

PkMPkM LL LL LL LL LL LL MM HH

concaveconcave LL LL LL LL MM HH HH IiIi

Step 24:

9 7



Table 16. Rating scheme used to compare the management applicability of models using scientific and
technical criteria discussed in the text.

XIENTIFIC
:RITERIA

TEST CRITERIA
-.

M o d e l Comparison with landslide
performance inventory-Type I model

errors
-.

Comparison with Hazard-
Potential Maps-Type I
errora

-

Comparison with Hazard-
Potential Maps-Type II
UWtS

Method
limitat ions

Comparison of  overal l
predictive capability

-.

For greatest predictive
accuracy. does the model
need to be calibrated with
field data?

-
Input-var iable data
accessibility and adequacy

Model accounts implicitly or
explicitly for spatial
variability of input  variables

Geographic
appl icabi l i ty

Model sensitivity to changes
in input variables

-.

Ability of model to correctly
identify slides in each of the

Continental- glaciated
terrain

Cascade volcanics
-.

NW Cascades system
-..

Olympic core  rocks
-.

western Olympic
Assemblage

-.

Eocene volcaniclastics
-.

M a n a g e m e n t Are management criteria
applications (L,M,H hazard) built in to

the model?
-.

Are models available to the
general public?

-.
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Can the following persons
run model (assuming
access to system that can
run programs):

._.

1

_ _

0

.,

..,

,..
No GIS experienceSCIENTIFIC

CRITERIA
Mgmt. Appl. 1

0

1

00

. . .

1
(exist ing

model with
no mgmt.
cr i ter ia)

Are model results
interpretable by the
followina  persons?:

.

c

- c

c

No mass-wasting mapping
experience

Yes=1
No=1

0

Mass-wasting mapping
experience

0

true for
geomor-

phologists
and forest

hydrologists

0

0

Vlodification
‘equirements Yes = t

No=1

Can model be adjusted to
work in all western WA.
terrains?

0

Is it essential that models
include management criteria
to be interpretable in the
current fol iowing arenas?:
. . . .

Yes = 1
No=0

1

1

regulatory appl icat ion 1

management application
(e.g., harvest and road
planning)

1

in most instances

I I
academic (e.g. ,  for  research
and analysis)

Can model be adjusted to
include other key variables
if topographic controls are
not dominant in the
watershed?

C
ti!

Yes =o
No=1

average
time per

basin

1 0 1

‘ECHNICAL
:RITERIA

:omputer  run
m e

0.20 I 0.92 I N/A1OmDEM

30 m DEM 0.05 1 0.30 1 N/A

10 m DEM txpectet
time to

:reate  w
WA.

nveragt

0.13 0.62

30 m DEM
0.03

I 0.20
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None =  0
Some = 1
(+JhK)

0 = some
(‘t  1 day)

1.’ 0 1 0 '.
1 = more
(>  2 days)

Adequate

0 1 1

= o

0 0 1

Developed during this
studyNone = 1

-~

Yes=0
No=1

0
l-

0 1

‘raining
equirements

How much training is
needed to run model
(assuming basic computer
nkills)?

How much training (i.e.,
office  and field)  is needed to
interpret model output?

‘raining
equirements

- -

ma
equirements

What logistiral
documentat ion exists?

‘ECHNICAL
:RITERIA

Can model be run with
DEMs and/or default values
as the only required input?

Does model accuracy
improve with increasing
DEM resolution?

0

(avg.  94%
improve-

ment)

0

Yes=0
No=1 (avg. 60%

l--I--improvement)

Ma storage
1 retrieval

- -

Modif icat ion
,equirements

Which model uses the
biggest storage space? Bigger =

1

1 I
(Needs - 5 X

storage
l

- - I - -

space of
SMOKPH)

Can model be run on a PC
with ARC/INFO software?

0 0 ~1  0
-I

Can model be run on a PC
with non-ARC/INFO GIS?

Yes, with
additional
program-
ming = 1

Yes, WI0
additionai
program-
ming = 0

-___

1 0

Are there potential problems
for PC users re: data
storage requirements for
areas larger than one
WAU?

yes=1
No=0

0 0

Are there potential problems
for PC users  re: data
storage requirements for
areas larger than several
WAUs?

Yes=1
No=0

0 1 1

--T-Is model adequately
documented internal ly (e.g.,
comment lines) for ease  in
adjust ing input variables, or
externally for interpreting
results?

Yes = 0
N o - l

1 1 N/A

--I

1 0 0



I

L
Does model need more
work and/or  programming to

Yes=1

adapt i t  for management
No=0

use?

1 TOTAL SCORE:

0

9 .6 16.5

0

23.6
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Table 17. Criteria used for rating scheme (Table 16.)

TEST CRITERIA
I

Rationale Used for Point Assignment

vlodel
Erfonance

-

d&hod
imitations

;eoyraphic
applicability

Management
applications

Comparison with larldslide
inventory - Type I model errors

See Table 8

Comparison with Hazard-
Potential Maps -Type I errors
- -

See Table 10

Comparison with Hazard-
Potential Maps -Type II errors

See Table 11

Compar ison of  overa l l  predic t ive
capabi l i ty

See Table 12

For greatest predictive accuracy,
does the lnodel  need to be

Both  of the models should be calibrated. The

calibrated with field data?
SOILS data cannot be calibrated.

Input-variable data accessibility
and adequacy

See Table 13. The SOILS data cannot be
updated.

Model accounts implicitly or
explicitly for spatial variability of
input variables

Topographic variables explicit for SHALSTAB and
SMORPH (0 pts.).  not for SOILS (lpt.). SHALSTAI
cohesion explicit (0 pt.). transmissivity, depth, phi,
and bulk density set as constants (4 pts.); if not
held constant, assign 0 pts. Soil properties implicit
in SMORPH and SOILS (0 pts.). Sum total and
divide by total number of points possible.

Model sensitivity to changes in See Table 14. The SOILS data cannot be updated
input variables / a n d  t h u s  i s  i n s e n s i t i v e .

Ability of model to correctly
identify slides in each of the
following terrain types:

._ __ __ ._ __ __ __ __ __ ___ __ __ __ __ __ __ __ _.  __ __ __ __

Continental-
- -

Cascade ,volcanics

NW Cascades system

Olympic core rocks

Western Olympic Assemblage I

Eiocene  volcaniclastics I

Are management criteria (L,M.H
hazard) built in to the model?

SHALSTAS does not have management criteria

Are models available to,the
general public?

All tested models are available to the public.

Can the fol lowing persons run
model (assuming access to
system that can run programs):

..,..............,..................” 1

11
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I-

0” Mgmt. Appl. NO GIS experience

iii

2
GIS experience

The SOILS data is easy to access with no GIS
experience. Both models require some GIS

5 Are model  results interp;etable by experience  lo  acceSS  and  run,

z
the fol lowing persons?:

. . . ._ _,.  ___ ___ .
7

a”
No mass-wasting mapping Experience with mass-wast ing concepts is a

5
experience necessary ingredient in understanding both models

Mass-wasting mapping
outputs. The SOILSdata  does not require this

experience
experience.

Modification Can model be adjusted to work in
requirements al l  western WA. terrains?

The SOILS data cannot be adjusted.

Is it essential that models include
management cri teria to be
interpretable in the current
following arenas?:

., . . . ._ _.  ._.  ___ __ __ __ __ _.  ._ ._ __ __ .._  __ __ __ ___ __ ._ __ __ ___ __

regulatory appl icat ion To be useful as a regulatory tool, any model must
have management cri teria.

management application (e.g., Most management appl icat ions would benefi t  from
harvest and road planning) having criteria set.

academic (e.g., for research and It is not necessary for criteria to be set for strictly
analys is) academic uses of any model.

Can model be adjusted to include The SMORPH model assumes topography control:
other key variables if topographic landslide behavior. If this is not the case, model
controls are not dominant in the output suffers. The SOILS data cannot be
watershed? calibrated.

;;I Computer run 10 m DEM-time per basin Divide average number of minutes to complete a

?
time model run by 60. The SOILS data is a static layer

I 30 m DEM-time per basin and as such, it requires no time to run.

zf

z
10 m DEM-time for western VVA Divide average number of hours by 672 (number of

a 30 m DEM-time for western WA
hours in a month). The SOILS data is a static layer

;;I
and as such, it requires no time to run.

F
Training How much training is needed to Training would consist of how to access the
requirements run model (assuming basic models, determine whether the model is

computer ski l ls)? appropriate for the intended use, how to calibrate
the models, and how to interpret the model results

How much training (i.e.. offce
and field) is needed to interpret
model output?

Because SHALSTAB does not have management
criteria, it is important to include extra training to
understand how to use that models output in the
area of interest. Some knowledge of hydrology is
usefu l .

ii! Training What logistical documentatiorl No documentation exists for the SOILS layer

1
requirements ex is ts? regarding its use as a slope stability screen.

I

:
Data Can model be run with DEMs Both models can be run using a DEM and the

rl
requirements and/or  default values as the only default values. The SOILS layer is a static

a
required input? coverage and therefore does not require a DEM.

Iii Does model  accuracy improve See Figure 14. The SOILS layer is a static
a
P

with increasing DEM resolution? coverage and therefore does not require a DEM.
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Data  storage Which model uses the biggest Both models produce grid type data, that requires

& retrieval storage space? less storage space than coverage type data, like
SOILS. However. SHALSTAB produces volumes 0‘
extraneous data.

-.

Can model be run on a PC with In addition to ARC/INFO, the PC user must also

ARC/INFO software’? have Fortran  and C to run  SHALSTAB.
-

Can model be run on  a F’C  with The SOILS layer is an existing coverage and does
non-ARC/INFO GE’? not necessarily need ARC/INFO sofhvare  to create

a map.

Are there potential problems for
PC users re:  data storage
requirements for areas larger
than one WAU?

For a small area (a WAU or two), there should be
no data storage problems.

-.

Are there potential problems for
PC users re:  data storage

Because both SOILS and SHALSTAB require more

requirements for areas larger
disk space, over large areas (e.g.. WRIAs), there

than several WAUs?
may be data storage problems.

-

Modif icat ion Is model adequately documented
requirements internally (e.g., comment lines) for

None of the models tested were more than

ease in adjusting input variables,
skeletally  documented internally. The SOILS data

or externally for interpreting
has no need for internal documentation. as it is not

results?
a program.

Does model need more work
and/or  programming to adapt it

The SHALSTAB model does not currently have

for management use?
management criteria.
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Figure 2. Shaded relic!  maps of the basins with the most and least amount of topographic relief. Red
lines indicate basin boLlndaries,  white circles are landslide locations. Figure 2a is the Jordan-Boulder
basin, with a view to the east, up the Cascade River. .The valleys that contain the Jordan, Boulder, and
Irene creeks are on the right, Monogram Peak is on the left Figure 2b is the Chehalis Headwaters basin,
which has the least amount of topographic relief. The view is to the north, towards the town of Pe Ella



i-lgure  .I.  Index lvlap ot western wasnmgron.
The inset map shows the coterminous
United States with Washington state shaded.
In the main map, the test basins used in
this study are highlighted. County boundaries
and some of the major cities of western
Washington are shown for orientation.
Heavy lines describe the approximate
boundaries of the major geomorphic terranits
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Irigure 6. i\ilap of the Lewis basin
:showing  the SOILS compared to
l-he  MWMU  information, The
outline  oi the basin  ana
Isndslides are drawn in black.





SMORPH Model SHALSTAB Model

0 1 2

Assigned Points

0 1 2

Assigned Points



Figure 12. Cumulative percent change in the number of correctly and incorrectly predicted
landslides for: (I;I increasing effective cohesions  (c’ = kNlm2) input to the
SHALSTAB  model; and, (2) increasing gradient-threshold values (S = %) input to
the SMORPH model. This graph permits visual comparison of the relative
sensrtivities of the models when the value of input variables is changed.

SIVORPH gradient thresholds (%)

47 7 0 93

SHALSTAB  effective cohesion (kNlm2)
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