Forest road impacts on channels and salmon habitat

Erosion and sediment supply

- Three main processes
 - Soil creep
 - Surface erosion
 - Mass wasting (landslides)

Soil Creep

- Down-slope movement of soil mantle
- Often considered the background erosion rate
- Enters streams via bank erosion

From Beechie et al. 2013

Surface erosion

Surface erosion

- What drives surface erosion on roads?
 - Area of road
 - Native material
 - Surface material
 - Traffic level
 - Percent draining to stream

Landslides

Road effects on landslides

Increased rates

- Roads: 10x higher
- Clearcuts: 4x higher
- Cumulative sediment increase
 - Area of roads and clearcuts is small
 - Cumulative increase often around 2x

Runoff processes

- Three main processes
 - Overland flow
 - Subsurface flow
 - Groundwater flow

Road effects

- Groundwater emerges from road-cut, enters ditch
- Ditch flow routes rapidly to stream

Channel and habitat response

Roads and fine sediment

From Cederholm and Reid 1987

Fine sediment and egg survival

From Jensen et al. 2009

Lane's balance for bedload

Increased sediment: pool filling

- Pools can be filled by large increases in coarse sediment supply
- Recovery is often less than 10 years

From Beechie et al. 2005

Increased sediment: aggradation

- Bed fining (spawning)
- Aggradation (rearing pools)
- Turbidity (feeding)

Increased sediment: channel widening

From Beechie et al. 2005

Planning road treatment/removal

- The sediment budget
 - Soil creep
 - Surface erosion
 - Landslides
- Quantify change in erosion rates
 - Background
 - With land use effects

Sediment budget result (Skagit)

- 10 sediment budgets
- Natural rates related to geology
- Clear cut and road erosion rates are 4 and 45 times higher

	Mature forest	Clear- cut	Road
Low-grade metamorphic	130	520	1040
High-grade metamorphic	53	318	4346
Glacial sediments	33	99	1485
Alluvium	0	0	0

Units: m³/km²/yr

Based on Paulson (1997)

Sediment supply map

 Identify sub-basins with elevated sediment supply

Landscape strategies

- Landform mapping indicates hazard areas for passive restoration
- Road mapping identifies at-risk sites for active restoration

- Road removal/abandonment
- Sidecast removal or reduction
- Surface thickness/hardness
- Traffic reduction
- Drainage improvement

M. Madej, USFS photos

M. Madej, USFS photos

M. Madej, USFS photos

Summary points

Road effects

- Increased surface erosion
- Increased mass wasting

• Channel response

- Fine sediment affects egg survival
- Coarse sediment affects channel structure and rearing habitat

Citations

- Beechie, T., J. Richardson, A. Gurnell, J. Negishi. 2013. Chapter 2: Watershed processes, human impacts, and process-based restoration. Pages 11-49 In Roni, P. and Beechie, T. (eds.) Stream and watershed Restoration: A Guide to Restoring Riverine Processes and Habitats. Wiley-Blackwell, Chichester, UK.
- Beechie, T.J., C.N. Veldhuisen, D.E. Schuett-Hames, P. DeVries, R.H. Conrad, E.M. Beamer. 2005. Monitoring treatments to reduce sediment and hydrologic effects from roads. Pages 35-65 In P.Roni, editor. Methods for monitoring stream and watershed restoration. American Fisheries Society, Bethesda, MD.
- Cederholm, C. J. and L. M. Reid. 1987. The impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: a project summary. Pp. 373-398 in E. O. Salo and T. W. Cundy, eds. Streamside management: forestry and fishery interactions. College of Forest Resources. University of Washington, Seattle, Washington. Contribution number 57
- Jensen, D. W., Steel, E. A., Fullerton, A. H., & Pess, G. R. (2009). Impact of fine sediment on egg-to-fry survival of Pacific salmon: a meta-analysis of published studies. *Reviews in Fisheries Science*, *17*(3), 348-359.
- Lane, E.W., 1955. The importance of fluvial morphology in hydraulic engineering. *Proceedings American Society of Civil Engineers* 81(745): 1-17.
- Paulson, K. 1997. Estimating changes in sediment supply due to forest practices: a sediment budget approach applied to the Skagit River basin, Washington. MS Thesis, College of Forest Resources, University of Washington, Seattle, Washington.