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Summary 
This pilot project is focused on monitoring riparian stand conditions on private lands in Washington 
State using remote sensing data.  
 

Time Period: November 1-2015 – June 30, 2017 
 
Goals and objectives 
The main goal of this pilot project is to provide background information to serve as a basis for 
potentially developing a Washington State riparian forests status and trends monitoring protocol based 
on remote sensing methods.  
 
Specific objectives of the pilot project included: 
 

1. Develop a protocol for field plot sample design and collect the necessary field data to 
perform analysis in the riparian forests of the Mashel watershed.  

 
2. Use direct and modeled methods for assessing13 riparian metrics using remote sensing 

methods that were identified in the previous literature review and assessed as appropriate for 
the Mashel watershed. 

 
3. Provide a focused synthesis, per indicator, summarizing the analysis, methods and 

feasibilities as well as costs and recommendations for state level analysis, we focused on 
comparing passive optical imagery based approaches to active LiDAR based approaches. 

 
Deliverables 

Monthly updates consisting of 30 minute presentations were provided during the RSAG monthly 
meetings and feedback from the committee was used to progress on the project. This included decisions 
involving field sampling protocol process and review, and the elimination of analysis due to time and 
cost constraints. For example, delineating streams in the field was not performed because collection was 
deemed too expensive due to the time involved and the processing of the survey grade GPS data. 
 
The final deliverables include: 
 

1. Protocol for field data collection and field database. 
 Moskal, L. M., A. Cooke and T. Axe, 2016. The Riparian Assessment Field Guide 2016. Extensive 

Riparian Vegetation Monitoring – Remote Sensing Pilot Study, Agreement No. IAA 16-205 (Revised 
6/8/2016); Prepared for Washington Department of Natural Resources. 
 

2. Geodatabases of all modeled riparian metrics.  
 

3. Project final report. 
 
 

 

 

 

https://drive.google.com/file/d/0BxHwRx7YcFmSakR2RVpRUjlKUDA/view?usp=sharing
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Recommendations 
The following recommendation are being made based on this research, more in-depth explanations of 
the recommendations are in the individual sections section: 
 

 LiDAR technology is the most efficient tool for hydrological mapping; albeit the field validation 
and hydrological flow rectification (such as the proper catchment of culverts) of such maps can 
be challenging. Optical technologies, such as satellite and aerial imagery, even when collected in 
stereo are not suitable for this task due to poor quality of ground models generated by such data 
when compared to LiDAR capabilities. 
 

 Remote sensing approaches that capture structural characteristics of the riparian forest, and the 
complex terrain of the landscape, specifically, LiDAR, are most suitable for mapping height, 
basal area and DBH of riparian forest. These characteristics also play a role in vegetation class 
determination. This is due to the LiDAR’s ability to capture ground characteristics as well as 
above and within canopy structure characteristics.  

o However, no wall-to-wall LiDAR data is yet available for Washington State. Moreover, 
future repeat collection of LiDAR data for the same sites, as needed to track changes over 
time, is also unknown. We recommend that baseline conditions capturing these 
characteristic for riparian forests are established from LiDAR data, with the 
understanding that the models developed are temporally, location and data sensitive. 
Other technologies, such as stereo satellite or aerial imaging and the developments in 
analyzing these data sources should continue to be followed as a potential alternative for 
long-term monitoring in place of multi-date LiDAR data. These data could be used to 
compare and monitor the trends in the riparian forests when utilizing the LiDAR-based 
baseline. 
 

 Additional research to address the number of models and the spatiotemporal reusability of 
models will need to be undertaken to extrapolate these models to other forest types in 
Washington State, which will also need to take into consideration permanent plot establishment 
and remeasurement on a five-year (or more) basis in those additional forests. 

o The pilot developed models at a cell level, as the project scales up, investigations of how 
to best aggregate these cells to forest stand types should be addressed. 
 

 We identified three further research areas to focus research in: 
o Hydrological mapping and validation, 
o Vegetation class and how these classes specifically translate to the riparian function, and; 
o Fusion of LiDAR and NAIP imagery for conifer/deciduous classification. 

 
 Finally, new technologies, currently, Structure from Motion (SfM), either from satellite 

(example: World View) or aerial imagery (example: NAIP), should be kept up with and 
eventually assessed for its ability to provide monitoring capabilities. 
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1. Study Design 
The study is based on a literature review conducted by UW Precision Forestry Cooperative (PFC) for 
RSAG in 2015 to identify and compare the suitability of remote sensing techniques for mapping riparian 
forest structural characteristics and composition (i.e., riparian forest metrics): 
 

 Moskal, L. M. and A. Cooke, 2015. Feasibility of applying remote sensing to a riparian stand conditions 
assessment, Agreement No. IAA 15-118 (Revised 1/1/2015); Prepared for Washington Department of 
Natural Resources. 

 
The review findings were used in refining the focus on types of remote sensing data and their suitability 
for assessing riparian metrics and lead to the decision of which metric analysis would be feasible to 
undertake as a pilot to explore the feasibility and relative benefits of using optical and LiDAR remote 
sensing in the state of Washington.  
 
1.1 Remotely Sensed Data 
We chose to work within the Mashel watershed since both LiDAR and imagery data was available. This 
is a hydrologically complex landscape, with an extensive drainage network and thus, a range of riparian 
forest types. The hydrological complexity of this landscape and the hydrological flow modeling 
associated with it are described in Appendix A. The forests in the watershed capture a range of 
management and age structures, which allowed provided a complex landscape to be applied in the 
remote sensing based-modeling. A more detailed description of the Mashel watershed study area 
including land ownership as well as forest structure is provided in Appendix B. 
 
1.1.1 LIDAR 
The LIDAR data for this project was collected by Watershed Sciences Inc. (now called Quantum 
Spatial) for Pierce County, Washington.  The dataset was made publicly available through the Puget 
Sound LIDAR Consortium (PSLC). Data was acquired between October 2010 and September 2011, and 
was processed and provided to Pierce County in 21 separate deliveries.  The total acquisition covered 
933,000 acres. The data was collected using Leica ALS50 Phase II and Leica ALS60 lasers collecting at 
rates between 83,000 kHz and 105,900 kHz and flying heights between 900 and 1300 meters.  The 
contract specified a native pulse density of 8 or more pulses per square meter. Watershed Sciences (now 
Quantum Spatial) provided processed point data files in LAS 1.2 format, and digital elevation model 
(DEM) ground surface files in ERDAS Imagine IMG format. Data and full documentation are available 
on the PSLC website: http://pugetsoundLiDAR.ess.washington.edu/ 
 
1.1.2 NAIP 
The National Agriculture Imagery Program (NAIP) imagery used for this project was collected in 2015 
by the USDA Farm Services Agency.  It is four band natural color (red, green, blue) and near infrared, at 
a one-meter resolution. It was delivered in the GeoTIFF format as individual Quarter Quad tiles. The 
focus of the program is to capture leaf-on imagery during the agricultural growing season. More 
information is available at the program website: https://www.fsa.usda.gov/programs-and-services/aerial-
photography/imagery-programs/naip-imagery/.  
 
1.1.3 World View 3 Imagery 
The World View 3 scene for this project was provided by the US Geological Survey (USGS).  The 
satellite acquired the image October 11, 2016. World View 3 is a Digital Globe satellite with a 0.31m 

https://drive.google.com/file/d/0BxHwRx7YcFmSSTNFaWc5NkF2ZEk/view?usp=sharing
https://drive.google.com/file/d/0BxHwRx7YcFmSSTNFaWc5NkF2ZEk/view?usp=sharing
http://pugetsoundlidar.ess.washington.edu/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
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panchromatic band and eight 1.24m visible/NIR bands. It also has two lower resolution instruments 
providing an additional 8, 3.7m bands and 12, 30m bands. 
 
1.2 Validation 
To best asses the validity of the techniques a field protocol and field data were also developed and 
collected as part of this project. These, including the number of plots, plot locations selection are 
described in depth Appendix B, the plot size, field data collected and measurements are given in 
Appendix C, moreover the Field Protocol has been delivered and can be downloaded here (Moskal L. 
M., 2016).  Time and cost limited the field data collection, which in turn limited the analysis chosen. For 
example, canopy present cover, which is captured quite well with LiDAR is difficult to capture quickly 
in the field. Some field methods such as the densitometer, although commonly used with image analysis 
have been shown to be less useful with LiDAR data. Other methods such as hemispherical photography 
require time consuming post-field processing. Similarly, although we have survey grade GPS equipment 
and the skillsets for collecting and processing this type of field data, the time and costs to collect 
hydrological data in the field was deemed to take away from the more consuming questions of remote 
sensing applications. The question of collecting such data at a State scale should be considered.  
 
Other data deemed too time and cost prohibitive to collect included individual stem maps and crown 
closure/density measurement suitable for evaluating LiDAR canopy percent cover data. This limited our 
ability to do any individual tree modeling or mapping from the remote sensing data. Vegetation class 
was also not collected in the field, because such data can be very subjective. All can be acquired, but at a 
cost. Moreover, canopy percent cover from LiDAR has already been established as a metric that is 
strongly related with LiDAR data in the literature, as documented in our previous pilot literature review 
(Moskal & Cooke 2015). 
 
1.3 Model External Validity 
It is critical to understand that all models developed in this project are geared towards the specific 
datasets and vegetation characteristics captured in the Mashel watershed. The models will likely perform 
in similar forest stand types (e.g, Western Cascades), but performance is questionable in coastal forests 
of Washington state. Therefore, we do not recommend extrapolating these models beyond the Mashel 
watershed as the errors and uncertainties associated with such extrapolations cannot be accounted for. 
 
1.4 Results Synthesis 
The table below (Table 1) summarizes the results of the pilot project. The Root Means Square Error 
(RMSE) estimates the deviation of the actual y-values from the regression line. Red squares indicate 
metrics which were not undertaken due to poor evidence of remote sensing methods capable of such 
modeling (in case of species) and the prohibitive costs of collecting age field data needed to develop the 
models (tree coring). Yellow cells indicate that the accuracy assessments for the models was not feasible 
due to lack of field data. Figure 1 shows a general graphic of the LiDAR models derived for the Mashel 
study area. 
 
 
 
 
 
 

https://drive.google.com/file/d/0BxHwRx7YcFmSakR2RVpRUjlKUDA/view?usp=sharing
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Table 1. Quick Reference Table of Results. 

Metric Status 
LiDAR  Imagery  

Model Type R2 RMSE Model 
Type R2 RMSE 

Species not modeled N/A N/A N/A N/A N/A N/A 

Age not modeled N/A N/A N/A N/A N/A N/A 

Hydrology 

completed; 
describe method; 
no accuracy 
assessment 

DEM 
processing, 
flow 
accumulation, 
initiation 
point 
definition 

N/A N/A N/A N/A N/A 

Canopy % Cover 

completed; 
describe method; 
no accuracy 
assessment 

direct LIDAR 
measurement N/A N/A linear 

regression 0.56* 0.34  

Vegetation Class 

completed; 
describe method; 
no accuracy 
assessment 

probability 
based 
classification 

N/A N/A NA N/A N/A 

Height (ft) completed linear 
regression 0.86, 0.89 9.74, 

11.12 N/A N/A N/A 

Crown Diameter 
(ft) completed linear 

regression 0.54 4.03 linear 
regression 0.5 8.19 

Stand Density completed linear 
regression 0.49 67.12 linear 

regression 0.45 105.14 

Basal Area (sq. ft) completed linear 
regression 0.73 62.11 linear 

regression 0.27 116.15  

DBH completed linear 
regression 0.7 2.77 N/A N/A N/A 

Snag Detection completed 

combined 
logistic 
regression / 
linear 
regression 

0.47 2.53 N/A N/A NA 

Conifer/Deciduous 
Classification completed 

combined 
logistic 
regression / 
linear 
regression 

0.67 2.8 linear 
regression 0.78 2.6 

Large Woody 
Debris completed 

combined 
logistic 
regression / 
linear 
regression 

0.19 6223.04 NA NA NA 

* field data only suitable for imagery methods 
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Figure 1. LiDAR-based models for Mashel study area. 

2. Hydrology (Channel Locations) 
2.1 LIDAR Method 
The development of channel locations from LIDAR is a standardized process, but involves making 
choices, all of which impact the final outcome. 
 
The general approach involves the following steps: develop a digital elevation model (DEM), perform a 
flow accumulation on the DEM, set a flow accumulation threshold to determine the perennial initiation 
point, and convert the result to a vector GIS dataset.  Details of the specific processing performed for 
this project are available in Appendix A.  
 
2.1.1 Digital Elevation Model Resolution 
The DEM for this project was provided by the LIDAR vendor, Watershed Sciences Inc. (now Quantum 
Spatial), at a three-foot resolution.  The process for creating a DEM from LIDAR data can be 
complicated, and it is commonly assumed that a DEM provided by the vendor will have a higher 
accuracy. 
 
The first significant decision to be made when developing stream channel locations is the resolution of 
the DEM.  The maximum resolution of most DEMs is around one meter, and is limited by the density of 
returns in the LIDAR acquisition.  Higher return density allows for higher DEM resolution.  A common 
return density for many acquisitions is eight returns per square meter.  Producing a DEM with a 
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resolution higher than one meter at this return density would result in many areas having few or no 
returns, resulting in greater inaccuracy due to cells in the model being interpolated. 
 
It is often assumed that higher resolution for a DEM is better, but very high resolution ground models 
introduce complications. It is not possible to know if the texture in a high resolution DEM is actually the 
ground, or if it is low vegetation, stumps and logs, or data processing artifacts, etc.  Additionally, where 
streams cross roads in high resolution ground models, the roads often block the streams and redirect 
flow down the roads.  It is possible, but again unknowable from the LIDAR alone, that culverts or cross 
drains are present, which would allow streams to flow under the road.  These problems seem to occur 
less frequently in lower resolution DEMs, which may argue for their use (Figure 2). 
 

 
Figure 2. Comparison of DEMON flow accumulation results using 3 ft. high resolution (left) and 30 ft. low resolution (right) 

DEMs for the same location.  The yellow circles highlight differences in flow accumulation behavior. 

 

For the purposes of testing, the vendor provided DEM was down-sampled to four lower resolutions: six, 
nine, fifteen, and thirty feet.  All resolutions produced different stream channel locations when all other 
processing was the same. 
 
Final processing was performed at the three-foot resolution as that was deemed the most visually 
accurate model. 
 
2.1.2  Flow Accumulation Algorithm 
The second important decision to make is the flow accumulation algorithm.  In the software used for this 
project, SagaGIS, there are eleven algorithms available.  The most common algorithm, Deterministic-8, 
or D8, is widely available in many different software packages, is commonly used, and is fast, but is 
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known to have limitations.  All flow entering a cell can only leave the cell in one direction, which is 
problematic in flatter areas where flow would disperse.  This often results in channel braiding. 
 
More complex flow accumulation algorithms exist, allowing for flow in multiple directions from each 
cell, and that handle both accumulation and dispersion of flow across a DEM, but these are often less 
widely available, and have large increases in processing time. The most sophisticated of these would 
require processing on high-end computing hardware or require a large amount of processing time in 
order to model flow accumulation statewide or over large areas. One of the most common of this type of 
algorithm is called Digital Elevation Model Networks or DEMON (Costa-Cabral & Burges, 1994). 
 
Final processing was performed using the DEMON algorithm.  The processing for this single watershed 
took several days on a very high power desktop computer. 
 
2.1.3  Flow Accumulation Threshold 
There is no basis for choosing a particular flow accumulation threshold to identify perennial initiation 
points for streams.  Weather, slope, geology, and vegetation, among other things, all impact how water 
flows and accumulates across a surface.  Each stream will have a unique combination of factors such 
that, no one threshold number will be appropriate for all streams. 
 
In previous work done by the DNR to classify streams for fish presence (Conrad, Fransen, Duke, 
Liermann, & Needham, 2003), (Fransen, Duke, McWethy, Walter, & Bilby, 2006), a threshold of 3.7 
acres, or 1.5 hectares, was used.  The 1.5-hectare number was also used for this project.  The exact 
number is not important, so long as the size of the contributing area is sufficiently small.  This may 
result in pushing initiation points slightly further upstream, but this is more appropriate than having 
them too low. 

 
2.1.4  Digital Culvert 
Stream-road intersections are problematic for identifying stream channel locations from LIDAR.  True 
road, culvert, and cross-drain locations are often not known with high accuracy or across ownership 
boundaries.  In a LIDAR DEM, roads are often higher than the stream channels they cross, blocking 
flow, and diverting streams in non-natural directions, often down the road (Figure 3). 
 



Final Report June 1, 2017 
 

18 | P a g e  

 
Figure 3. Flow accumulation streams (red) intersecting roads, and having flow diverted. 

 
Areas where streams are blocked often have a sink, an area into which water flows, but with no way for 
it to flow out. An approach to automatically identify these sinks, and create flow paths out of them was 
described by the USGS in a Scientific Investigations Report (Poppenga, Worstell, Stoker, & Greenlee, 
2010).  
 
This method was implemented in ArcGIS, and was used to modify the original 3 ft. DEM so that flow 
accumulation algorithms would continue to route flow through stream channels at stream-road 
intersections (Figure 4).  This method is completely automated and does not require knowing where 
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roads, culverts, or cross-drains are located. This is not a 100% effective means of modeling culvert 
locations. It is possible that real culverts may be missed, and that digital culverts may be placed where 
real culverts do not exist. Visual validation and manual cleanup could solve this, but implementation at 
statewide level would require a substantial investment of time in this part of the post-processing and 
would be a significant cost to the project. Anecdotally, an examination of stream/road intersections in 
the Mashel watershed indicate that digital culverts are helpful, and their usefulness may outweigh the 
errors in modeling their locations.  If this limitation is acceptable, it may be possible to skip validation 
and cleanup. 
 

 
Figure 4. Stream channels (green), entering sinks (blue), and flowing out through digital culverts (yellow) under the road. 
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2.1.5  Limiting Factors 
At this time, it is not known which DEM resolution, flow accumulation algorithm, or flow accumulation 
threshold produce the most accurate stream channel locations.  Flow accumulation algorithms and 
digital culvert development can take a large amount of processing time, especially for large areas. 
 
2.2 Accuracy Assessment 
We did not collect data on where the true channel locations were, so there was no way to test the 
accuracy of any specific stream channel model or the set of processing choices used to create it, 
however, as the above figures show, LiDAR is very effective at capturing hydrological features on the 
landscape due to the detail ground models, this is beyond and above the abilities of other remote sensing 
technologies. 
 
2.3 Other Techniques 
No appropriate data are available for the Mashel watershed study area to attempt an NAIP Stereo or 
aerial IfSAR assessment approaches. Due to the high stand density and poor ground visibility in the 
riparian areas the manual stream digitization from aerial orthophotography by a technician  
were not attempted. Moreover, the accuracy of such manually approaches is also unknown and not 
believed to exceed accuracies feasible form LiDAR, with similar field data needs required to test the 
accuracies. Unfortunately, because of the issue of shadows in optical imagery, the utility of such data to 
manually clean up or improve on the features such as culvert locations in LiDAR data is unfeasible. 
 
2.4 Recommendations 

 We recommend LiDAR based methods, over imagery, based on expected accuracy. The higher 
resolution DEM available from LiDAR facilitates more accurate delineation of channel location, 
which is essential for identifying riparian forests. Although data availability makes this option 
not currently feasible for the whole state of Washington. 
 

 As stated in the limitations, the resolution, algorithms and thresholds of these models should be 
further explored in an additional pilot project. Ideally, a project should be established to compare 
the accuracies of using different DEM resolutions and flow accumulation algorithms, as well as 
ways to better predict perennial initiation points. 

 
 To do so adequately a robust field-derived hydrology dataset would be needed for model 

validation and testing. Ideally hydrology derived from LiDAR would be validated with survey 
grade GPS field observation or other comprehensive culvert data, however, to acquire such data 
under conditions of high variability in topography and canopy cover the GPS occupation times 
might have to vary from a few minutes to a few hours making the costs of such data collections 
extremely expensive at a watershed level. These costs would be amplified at a state level. 
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3. Canopy Height 
3.1 LIDAR Method: Comprehensive Model Selection 
The methods described here for evaluating the performance of the canopy height metric were also used 
for Stand Density, Basal Area, and Diameter. 
 
Two standard forestry height metrics for plots are the mean plot height, and Lorey’s height, a basal area 
weighted height that allows larger trees to affect the height more than smaller trees. Mean height and 
Lorey’s height were calculated for each plot from the field data for live, large (diameter >= 5”), 
hardwoods and softwoods.  Linear regression models for both height metrics were developed for this 
project. 

3.1.1 Dependent Variable Transformation 
The field-measured tree heights, are the dependent variables the models are trying to predict. They were 
examined using the Shapiro-Wilk test for normality to determine if the data needed to be transformed.  
The original data, and three transformations of the data (log, square root, and squared) were all tested 
using the Shapiro-Wilk test. 
 

Table 2. Shapiro-Wilk Normality Test p-values. 

Variable y log(y) sqrt(y) (y)^2 

Lorey’s Height 0.012 0.001 0.031 0.000 

Mean Height 0.075 0.030 0.393 0.000 
 
For the Shapiro-Wilk test, p-values should be 0.05 or higher, for the distribution to be considered 
normal.  If multiple distributions had p-values of 0.05 or higher, the one with the highest p-value was 
chosen.  For these metrics, this test indicates that Lorey’s height could be, but does not need to be 
transformed, while mean height should be square root transformed. 
 
Quantile-Quantile Plots (QQ Plot) were also created to identify unusual residual behavior in the 
transformed data, shown in Figure 5 and Figure 6. 
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Figure 5. QQ Plot of Lorey’s height. 

 
Figure 6. QQ Plot of square root transformed mean height. 
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3.1.2 Dependent Variable Selection 
The Fusion LIDAR processing program CloudMetrics, (McGaughey, 2016), was used to calculate 100 
different metrics for each of the 113 plots from the LIDAR data.  The models that most successfully 
predict heights needed to be identified.  These models will use some of these LIDAR metrics and not 
others.  Additionally, some LIDAR metrics are highly collinear, and models should avoid using multiple 
collinear metrics. 
 
Our experience has shown that Intensity, L Moment, and Count metrics could be removed from 
consideration for modeling heights, because they have not been useful in previous height modeling 
work.  The remaining metrics tend to form three categories: height, cover, and distribution of 
heights.  To avoid collinearity issues, models were limited to using only one metric from each 
category.  To this end, only models with three or fewer predictor variables were considered. 
 
An automated process was developed in the statistical software R to compare all possible models with 
one, two, or three predictor variables.  This process considered all distinct metric combinations, with and 
without interaction between predictor variables, and tested each predictor variable without 
transformation and with log and square root transformations.  Each model was ranked by its R2 value 
(these were back-transformed if the dependent variable was transformed). This allowed for a relatively 
simple, straight forward and repeatable, but effective method of model selection. 
 
3.1.3 Model Verification 
The best performing models from the comprehensive modeling process (those with the highest R2 
values) were selected and investigated further.  Models with collinearity among the predictor variables 
were removed from consideration. 
 
Often, multiple models have similar performance, so the logic for choosing one comes down to factors 
such as explainability and implementability.  A simpler model, one with fewer predictor variables or 
fewer interaction terms, is often easier to understand and explain, and easier to use.  It might be better to 
choose a model because it is easier to explain and use even if it performs slightly less well (i.e. no 
practical difference). Models that tend to tie to tree physiology and simple parameters are easy to 
characterize and interpret. 
 
The remaining model with the highest R2 value was then examined looking for non-significant 
coefficients.  If interaction terms were non-significant, they were removed.  The model was plotted, 
again looking for undesirable behavior, for example, significant trending captured by sloping in the 
residuals. 
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Figure 7. Lorey’s height model behavior, Fitted Values vs. Residuals plot. 

 
Figure 8. Lorey’s height model behavior, Normal Quantile-Quantile plot. 
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Once the final models were selected, they were further reviewed using Box-Cox power transformations 
to verify the original dependent variable transformation.  

 
Figure 9. Box-Cox Test for Lorey’s Height. 

 
Figure 10. Box-Cox Test for Mean Height. 
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3.1.4 Final Selected Models 

The results reported here are for Lorey's height (see Glossary Section for equation and further details) 
and mean height. Lorey’s height weights the contribution of trees to the stand height by their basal area. 
Lorey's height is more stable than an unweighted mean height because it is less affected by mortality and 
harvesting of the smaller trees. 

R2 and RMSE values for models with transformed dependent variables have been back-transformed 
where necessary. 

The comprehensive modeling approach described here may not identify the absolute ‘best’ model.  
However, the final selected models should be close to the ‘best’, and are similar in performance to other 
work in the literature. The applicability of landscape level analysis with these types of dynamic models 
is shown in Figure 13. 

Table 3. Height models*.  

*all models presented in this report are location and LiDAR data specific, thus, these models should not be used with other 
LiDAR acquisitions or at other geographic locations (even in Washington state). 

Metric Model R2 RMSE 

Lorey’s 
Height 

LoreysHeight = 20.62292 + (0.98899 *A) 0.89 11.12 

Mean Height sqrt(MeanHeight) = 4.942 + (0.05989*B) + (0.02393*C) + (-
0.0003889*B*C) 

0.86 9.74 

 
Table 4. Height model variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.CURT.mean.CUBE cube root of the mean cube 
height, all returns 

B Elev.P50 50th percentile of the heights, 
all returns 

C (All returns above mean) / (Total first returns) * 100 percent cover; number of all 
returns above mean height / 
total number of first returns 
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Figure 11. Predicted vs. plot Lorey’s height with the line of equality. 

 
Figure 12. Predicted vs. plot mean height with the line of equality. 
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Figure 13. Mashel riparian buffer forest height analysis, top map Lorey’s height, middle height above 50ft, bottom averages 

height classes per stream reach, all from derived LiDAR based height models. 
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3.1.5 Limiting Factors 
LIDAR is expensive per unit area.  LIDAR data is not available statewide; it is only available in 
relatively small spatial extents where acquisitions have taken place.  LIDAR point data requires a large 
amount of storage space and processing capability. 
 
All models presented in this report are specific to the LiDAR data and geographic location, thus the 
models cannot be and should not be extrapolated to other landscapes and watersheds without 
understanding that the errors and uncertainties will change and cannot be evaluated. 
 
3.2 Accuracy Assessment 
3.2.1 Field Data 
A primary goal of the field data collection, was to locate the 130 field plots across the full range of 
riparian forest types in the Mashel watershed. These plots were then measured for the various riparian 
forest metrics under investigation and either used to build the models, assess the accuracy of the models 
or both. 
 
The watershed was pre-stratified into bins, and eight to 14 plot locations were randomly chosen for each 
bin from potential areas of the watershed in that bin, this binning process is described more in-depth in 
Appendix B.  Certain bins made up a higher proportion of the watershed, so these bins were assigned 
more plots. Thus, very large trees, which are rare on the landscape, had fewer bins and thus fewer plots. 
There are also fewer of these trees in our models and the residuals associated with these heights of these 
trees are larger, thus the errors in height estimates for these taller trees will also be slightly greater. This 
is a common issue with LiDAR data, especially since we don’t expect the LIDAR pulse to hit the or 
even register a return off the most top leader of the tree. 
 
For more detailed information, see Appendix B - Plot Location Selection. The field data collection is 
described briefly in Appendix C and a full field data collection Protocol is provided as a separate 
publication (Moskal L. M., 2016). 
 

1. Moskal, L. M., A. Cooke and T. Axe, 2016. The Riparian Assessment Field Guide 2016. Extensive Riparian 
Vegetation Monitoring – Remote Sensing Pilot Study, Agreement No. IAA 16-205 (Revised 6/8/2016); Prepared for 
Washington Department of Natural Resources. 
 

3.3 InSAR and Other Technologies 
No Interferometric Synthetic Aperture Radar (InSAR) data was currently available for study area, nor 
elsewhere in the state. InSAR data will eventually be available nationwide, however, this future 
technology was not readily available for assessment during the time scope of this project. 
 
Future technologies such as those utilizing, satellite stereo imagery and/or Structure from Motion (SfM) 
might be able to provide state wide estimates of canopy height. One such project is being proposed as a 
collaboration between the USDA Forest Service Pacific Northwest Research Station and the 
Environmental Protection Agency. The approach would use already collected 2016 Washington State 
near-infrared NAIP imagery to produce a canopy surface model. Although the error of optical imagery-
based surface height models, can be up to 5m for canopy heights, this error would be reduced in areas 
with LiDAR data (potentially to as low as 20cm) (Shean, 2016). These errors have not been specifically 
investigated for height models of forest canopies. 

https://drive.google.com/file/d/0BxHwRx7YcFmSakR2RVpRUjlKUDA/view?usp=sharing
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We have performed a very preliminary test of stereo based satellite imagery canopy height modeling in 
the Mashel watershed, and report on these preliminary results in Section 15. Future Technologies. 
 
3.4 Recommendations 
It is critical to understand that all models, including the height models, developed in this project are 
geared towards this specific LiDAR acquisitions (the point spacing of the data) and to the characteristics 
of the vegetation captured in the Mashel watershed. We do not recommend extrapolating these models 
beyond the Mashel watershed as the errors and uncertainties associated with such extrapolations cannot 
be accounted for. 
 

 We recommend LiDAR based canopy height models. In general height modeling with LiDAR 
has been well accepted and can even outperform field data collection. However, LiDAR data 
availability makes this option not currently feasible for the whole state of Washington. 
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4. Crown Diameter 
4.1 LIDAR Method 
The method used to build these linear regression models is described in further detail in Section 3, the 
LIDAR Method for Canopy Height.  
 
Two models were developed to estimate crown diameter from LIDAR.  The first used only metrics 
derived directly from the LIDAR data itself.  The second could include radius or diameter values 
calculated from the individual tree objects (ITOs) created during the segmentation of the 6 ft. resolution 
canopy height model (CHM).  The process of segmenting the canopy model into individual tree objects 

(i.e. portions of LiDAR point cloud assumed to represent individual trees) is described further in 
Appendix D. 
 
Two models were developed because it was believed that ITOs provide additional information about the 
trees on the plot, and could potentially improve the accuracy of the crown diameter model.  However, 
segmenting a canopy height model and measuring diameters and radii of the resulting ITOs, is time 
consuming.  The additional processing time, may outweigh the value of any additional accuracy. 
 
In Table 5 below, we describe the different crown size metrics that were calculated for each tree object.  
These were averaged for the trees objects on each plot.  The plot averages were included as possible 
metrics in the regression models. 
 
The center of the tree, the high point, is the center of the cell with the highest height in the tree object, 
and can be considered the stem location.  Each tree object has 16 vertices in the cardinal directions, at 
the cell centers nearest the edges of the crown.  Distances from the high point to each vertex were 
calculated and used for the crown size metrics. 
 

Table 5. Diameter and radius metrics calculated for each tree object. 

Maximum Radius The longest radius from the high point (the furthest vertex). 
Minimum Radius The shortest radius from the high point (the closest vertex). 
Longest and 
Perpendicular Diameter 

The diameter based on averaging the longest transect with the 
transect perpendicular to the longest transect. 

NS/EW Average 
Diameter 

The diameter based on averaging the North/South transect and the 
East/West transect lengths; these may not be the longest transects. 

Average Radii Diameter The diameter based on averaging the lengths of all the radii from 
the high point to each vertex, and doubling the average. 

Crown Area Diameter The diameter based on treating the polygon as a circle and back-
calculating the diameter from the circle’s area. 

 
Table 6. Crown Diameter Model without Canopy Height. 

Metric Model R2 RMSE 

Crown 
Diameter 

log(Crown Diameter) = 3.087 + (0.0005992 * A) + (-0.0001125 * 
B^2) + (0.000000974 * A * B^2) 

0.46 4.35 
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Table 7: Model variables. 

 
Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.P99 99th percentile of the 
heights, all returns 

B Int.mean mean intensity, all returns 
 

 

 
Figure 14. Predicted vs. plot crown diameter with the line of equality; model without CHM metric. 

 
 

Table 8. Model with the Canopy Height Model. 

Metric Model R2 RMSE 

Crown 
Diameter 

log(Crown Diameter) = 7.269 + (-0.6733 * sqrt(A)) + (-0.001303 * B^2) 
+ (-2.112 * log(C)) + (0.0001857 * sqrt(A) * B^2) + (0.3434 * sqrt(A) * 
log(C)) + (0.0006011 * B^2 * log(C)) + (-0.0000873 * sqrt(A) * B^2 * 
log(C)) 

0.54 4.03 
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Table 9. Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.P50 50th percentile of the 
heights, all returns 

B Int.mean mean intensity, all 
returns 

C Average minimum radius of the individual tree objects 
in each plot 

see Appendix D 

 

 
Figure 15. Predicted vs. plot crown diameter with the line of equality; model with CHM metric. 

 
4.1.1 Limiting Factors 
Development of the canopy height model, and measuring the diameters of the individual tree objects is 
very time consuming. This processing took several weeks for the Mashel watershed.  The inclusion of 
the Canopy Height Model (CHM) radius and diameter information as possible metrics for the model did 
increase the accuracy, but not by a substantial amount.  The additional processing time may not be worth 
the accuracy improvement.  This will need to be determined based on available project budget and goals. 
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4.2 Imagery Analysis Method 
Imagery analysis consisted of two phases. The first was the identification and spatial-delineation of 
individual tree crowns. The second was the interpretation of the respective geometric and spectral 
signatures associated with these estimated tree crowns. Supplemental information regarding the exact 
data, time, and resources that were used can be found in Appendix E. The general approach and 
methodology of individual tree identification is discussed below.  
 
Before any crown measurements can be accurately summarized, individual trees need to be delineated 
into distinct objects. These will serve as the base for analysis and are referred to as Individual Tree 
Objects [ITOs]. This is essential for most of the model estimations derived from imagery. An algorithm 
was created that masks out unwanted features on the ground, identifies bright points that represent the 
tops of trees, and then grows the crown out until one of several evaluation thresholds is met. Once ITOs 
are located, they can be manipulated further in order accommodate for varying scenarios on the 
landscape. This report does not offer specific approaches to the unique problems, but it does serve to 
identify major areas where refinement can be made. 
 
4.2.1 Tree Delineation Algorithm Overview 
The primary segmentation and classification algorithm used in the project area will hereby be referred to 
as the TDA [Tree Delineation Algorithm]. The TDA identifies and delineates individual tree crowns that 
are visually evident within the imagery. From this, information pertaining to each identified tree can be 
exported for further analyses. It is important to note that only a single algorithm was used for the entire 
project area, and the accuracy results for many of the project metrics reflect this singular approach. This 
will be discussed more in the 4.2.3 Limiting Factors section at the end of this section.  
 

 
Figure 16.Left: Sample Plots 4113 & 2102 Zoomed out. Right: Sample Plot 4113: Zoomed in 

 
Step 1: Find, classify, and mask non-tree objects. 
To achieve this, a valley-following technique was used. This approach utilizes the “valleys” of shade 
that typically exist between the crowns of dense forest stands, which can be defined by thresholding a 



Final Report June 1, 2017 
 

35 | P a g e  

local minima of pixel brightness values. This same approach is also applied to non-forest objects, like 
bare ground, roads, and other man-made structures, by evaluating levels of brightness and several pixel 
thresholds that help discriminate vegetation from non-vegetation. First the landscape is segmented, 
drawing borders around our perception of these objects. Then conditional evaluations are used to assign 
classes to each. 
 
The segmentation used for identifying roads, bare ground, and man-made structures used a balanced 
approach of object size, the emphasis placed on color, and how continuous the object may be across 
large areas. From here, thresholds for brightness and NDVI were evaluated to identify these objects non-
vegetative objects, so they could be immediately masked out or saved for future work.  
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅− 𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 | Thresholds: Brightness >= 100 and NDVI <0.1 

 
Next, the “basins” existing between trees are located and masked as well. The segmentation for this 
process focuses much more on the compactness, continuousness, variability in size, and emphasis on 
color in order to draw borders around the basins. Because of the emphasis on color in this classification, 
all the remaining bands are used. The dark gaps between trees were identified by band thresholds, found 
in Table 9.  
 
It is important to have positive thresholds for NIR and NDVI, unlike the rest. This helps identify areas 
that are too dark to analyze but still most likely vegetation. This could serve as some use in 
troubleshooting or assumption-building, but masking these areas is important for further crown 
identification.  
 
The two figures below show the change when the masking function is applied. The first figure is the 
same original snapshot from above. The black area in Figure 17 represents all landscapes falling outside 
plot boundaries. The grey represents the basins or canopy gaps between the trees. The final variations of  
green is the remaining area of interest and analysis: visible tree canopy. All remaining algorithm 
functions will be applied only to this green area. The advantages of applying the mask serve to simplify 
the complexity of both the remaining algorithm and total processing time. 
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Figure 17. Sample Plot 4113 before any processing show in in true color imagery (left) and after masking of background 
vegetation with the crowns colored in green (right). 

 
Step 2: Find the “Seeds” of individual tree crowns 
The processing from here forward is dealing only with pixels representing trees, as most other land 
features have been masked. First, a watershed segmentation is used to delineate visually evident tree 
crowns, using NDVI and Green as the band inputs. Any segmentations containing only 1 pixel were 
combined using a nearest neighbor approach. This serves to either eliminate false tree tops or smooth 
potential trees that lack the resolution necessary to be evaluated with the remainder of the algorithm. 
Using these newly formed tree objects, the algorithm evaluates NIR values to locate local maxima. 
Because this step evaluates potential tree objects against one another, it does not necessarily mean every 
current object will have a corresponding tree top.  
 
Step 3: Grow Seeds and remove false Seeds 
Once potential individual trees are located a re-structuring of image object borders is performed. It starts 
first by making the “seed” its own object and then grows it outward based neighboring pixel’s ratio of 
NIR value. It evaluates if this value is in an acceptable range by comparing it to the NDVI and Red 
standard deviation values of all existing seeds. This ensures whether or not a neighboring pixel is likely 
to be part of the same tree. As this process loops the new tree line grows and terminates if the 
comparison in band values breaches a threshold, reverses in direction or an existing boundary is met. 
 
Step 4: Clean up and Export 
Remaining unclassified regions are merged together so only ITOs are the most visually distinguishable. 
After this, the ITOs are exported as either a vector or a raster layer, with important attributes saved for 
each object, including but not limited to: The sample plot of location, statistical band values, size and 
geometry, shape and skewness, and specific coordinates.  
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The snapshot in Figure 18 shows the classification of plot 4113, with an individual tree selected. 
Information pertaining to this tree is located in the dialogue box next to it. This data is then used to 
estimate respective forestry metrics included in this study. 
 

 
Figure 18.Classification results of plot 4113. 

 
4.2.2 Accuracy Assessment 
Average crown diameter estimates are within plus or minus five feet of the actual mean crown diameter 
for over 60% of the sample plots – represented by the histogram in Figure 19. This result is the first 
major reflection of only using a single algorithm for tree identification; it may perform relatively well 
for many of the stand structures in the area, but outliers do exist and may introduce extraneous error if 
they are not specifically accounted for. 
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Figure 19. Histogram of mean crown diameter. 

Error in estimating crown diameter also depends on the relative crown sizes within a plot. If tree crowns 
for a plot have an average diameter ranging between 10 and 20 ft. the algorithm shows a tendency to 
overestimate crown diameters. Conversely, if a sample plot’s tree crowns are much larger, averaging 
beyond 25 feet, then the algorithm tends to underestimate crown diameter. This variation of inaccuracy 
is captured in Figure 20. 
 

 
Figure 20. Error in estimating crown diameter. 

Accuracy results for crown diameter increases generally when only attempting to estimate large, living 
trees [as the alluded algorithm is designed to find]. For small trees, or standing dead trees, accuracy 
results diminish because they are not detectable via the pixel composition of the image, this can be 
observed in Figure 18. Furthermore, the technique appears to do better when plots are located in older, 
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more established tree stands. The variance in crown diameters is much wider in field measurements than 
in model predictions, which generally exhibit much smaller ranges crown diameter predictions. This is 
most likely because segmentations are predisposed to making somewhat uniform shapes and growth 
patterns from tree “seeds”. Moreover, crown diameters are estimated using the perimeter and area of the 
estimated crown, not necessarily from taking the largest linear estimation from within any vector 
representation of the tree. 
 

 
Figure 21. Scatterplot of predicted vs. observed crown diameter +-5 feet. 

 

 
Figure 22. Scatterplot of predicted vs. observed crown diameter - all plots. 
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Figure 23. Scatterplot of predicted vs. observed crown diameter standard deviation. 

 
 
4.2.3 Limiting Factors 
Illumination angles, sensor viewing angles, species, stand 
density, and image quality can all affect the feasibility of 
identifying individual tree canopies for both automated and 
manual methods.  Imagery must be of a high enough 
resolution for individual crowns to be visible; this usually 
means multiple pixels need to be able to capture a tree 
crown.  Ideally, if a crown is 3 feet in diameter, a pixel of 1-
foot (but preferably even higher to accommodate the mixed 
pixel issue) is needed, providing at least 9 pixels covering the 
crown. This is an ideal example where pixel mixing is not an 
issue. Differing image quality over an area can cause results 
to vary across a study site. 
 
There are specific factors that can influence the TDA, by the 
nature in which it functions. One of the most significant is 
how the tree basins [i.e. gaps in the canopy] are calculated. 
Much of this hinges on a brightness value, which means that 
shade can heavily influence the accuracy in choosing between 
trees and basins. The most extreme occurrence of this was plot 2321, in which the algorithm detected no 
trees. 
 

Figure 24. Plot showing no trees detected 
due to poor illumination and crown 

shadowing. 
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Field data indicates that plot #2321 has 11 living tally trees and a fairly open canopy. But because there 
is so much shade present in the image, trees are not represented by pixel brightness, and therefore no 
trees were recognized by the algorithm. This could be a specific issue when trying to identify late 
successional forest types, however, sometimes texture inherent in the imagery due to these shadows is 
utilized for successional forest class identification (Moskal & Franklin, 2002). 
 
The TDA underestimates the number of trees in a plot by an average error of 9 trees per plot. This 
occurs because many trees in the image are masked by the crowns of others. Furthermore, 1-meter 
resolution is too course (not detailed enough) to capture some of the younger, smaller (less than 1 m 
crowns) trees within the inner plot, even if they were not covered by larger growth. Therefore, it might 
be necessary to adjust the variables of the algorithm depending on the age and structure of relative tree 
stands.  
 
Some of these results do not depend strictly on tree size, however. A few plots that were dominated by 
Pacific Silver Firs showed poor results of tree crown delineation, compared to a landscape mostly 
dominated by Douglas Firs and Western Hemlocks. Because of this, the threshold pixel values within 
the algorithm might also be adjusted by tree species in order to bolster estimation accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Pacific Silver Fir plot 2109. 

Field data collection for plots 2109 and 2104: Landscape is dominated by irregularly spaced Pacific 
Silver Firs and blueberry bushes. The firs are a range of sizes (2in-12in) and are sometimes found in 
very tight groupings. Almost exclusively Pacific Silver Firs. Fairly large gap in the canopy, most trees 
have a relatively narrow crown and many are not within the size threshold. 
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Figure 26. Pacific Silver Fir plot 2104. 

 
Moreover, understory is often overshadowed or covered with the dominant canopy and cannot be 
detected in optical or imaging remote sensing data and subsequent techniques. 
 
4.3 Recommendations 

 We found that NAIP imagery, available for all of Washington State, was usable for successful 
crown delineation, if no other remotely sensed data is available, for the majority of sample plots. 
However, issues still exist within the approach of the delineation algorithm which needs the 
ability to adapt to varying stand types, especially deciduous-dominant or highly diverse stands. 

 Without a more dynamic TDA, we recommend the LiDAR methods which tend to outperform 
the imagery at this task, especially due to LiDAR other usefulness in describing tree crowns such 
as capturing height.  
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5. Snag Detection 
5.1 LIDAR Method 
The methods described here were also used for Conifer/Deciduous Classification and Large Woody 
Debris. 
 
The field crew collecting plot data recorded whether each tree measured was alive or dead, allowing for 
plot level counts of snags.  There were plots with no snags present, creating a non-normal distribution of 
counts shown in Figure 27 below. 
 

 
Figure 27. Histogram of snag abundance at field plots. 

The variable should be transformed, but the square root transformation does not solve the issue, and zero 
cannot be log transformed (the log of zero is negative infinity).  These plots cannot be removed, because 
they are legitimately zero, and models should be able to predict an absence of snags. 
 



Final Report June 1, 2017 
 

44 | P a g e  

One method to deal with this, called a log-plus-one transformation, was not used, because an 
overrepresentation of plots without snags may result in too few plots across the range of the model, 
which would cause poor model performance. 
 
The approach taken, is to use two models in combination.  The first model is a logistic regression model 
to estimate the probability of snags being present or absent in a plot.  The second model is a linear 
regression model used to estimate the abundance (number) of snags in a plot, and was developed using 
only plots with snags present.  These two models are multiplied together to form the final model. 
 
5.1.1 Logistic Regression Model 
Using all plots, and the comprehensive modeling approach described in Section 3.1 LIDAR Method: 
Comprehensive Model Selection, models were built and ranked by their McFadden pseudo-R2 
values.  However, unlike the methodology in Section 3.1.2 Intensity, L Moment, and Count metrics 
were not excluded from the comprehensive model selection process. Review of the models with the 
highest R2 values resulted in selecting the model below. 
 

Table 10. Snag Detection Logistic Model. 

Metric Model McFadden 
pseudo-R2 

Snags 
Presence/Absence 

SnagsPresenceAbsence = 168.87152 + (-7.81701 * A) + (-
35.66202 * log(B)) + (-5.66108 * C) + (1.69955 * A * log(B)) + 
(0.20528 * A * C) + (1.16737 * log(B) * C) + (-0.04295 * A * 
log(B) * C) 

0.60 

 
Table 11.  Snag Detection Logistic Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.stddev standard deviation of the 
heights, all returns 

B Int.P99 99th percentile of intensity 
values, all returns 

C (All returns above mean) / (Total first returns) * 100 percent cover; number of all 
returns above mean height / 
total number of first returns 

 
5.1.2 Linear Regression Model 
Using only plots with at least one snag, and the comprehensive modeling approach described in Section 
3.1 LIDAR Method: Comprehensive Model Selection, models were built and ranked by their back-
transformed R2 values.  However, unlike the methodology in Section 3.1, Intensity, L Moment, and 
Count metrics were not excluded from the comprehensive model selection process.  Further review of 
the models with the highest R2 values resulted in selecting the model below. 
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Table 12. Snag Detection Linear Model. 

Metric Model R2 

Snags 
Abundance 

log(snagsAbundance) = 0.82868 + (0.44633 * A) + (-0.01402 * B) + (-
0.14325 * A * B) 

0.43 

 
Table 13. Table 12. Snag Detection Linear Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.skewness measure of lack of symmetry of the 
distribution of heights, all returns 
(McGaughey, 2016) 

B number of individual tree objects identified 
in the 6 ft. canopy height model 

see Appendix D 

 
5.1.3 Final Model 
The logistic regression model for presence/absence and the linear regression model for abundance were 
multiplied together and regressed against the field measured snag counts. 
 
This model had an R2 of 0.47 and an RMSE of 2.53, shown in Figure 28. 
 

 
Figure 28. Predicted vs. plot snag counts with the line of equality. 
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5.1.4 Random Forest 
The literature review performed before this pilot project identified a method that used Random Forest 
classification on LIDAR metrics to predict the presence of snags in various size classes (Martinuzzi, et 
al., 2009). This method was attempted to see how results compared to the presence/absence logistic 
regression model used above, with the results presented in Table 14 and Table 15. 
 
The size classes identified by the researchers in that paper were tested, but only two of those classes are 
reported here, the ≥ 6” class (15cm) and the ≥ 10” class (25cm).  The ≥ 6” class, is similar to the 5” 
minimum diameter cutoff used in our model.  The ≥ 10” class is reported because it has approximately 
equal numbers of plots with and without snags.  For small size classes, nearly all plots had snags, while 
for large size classes, almost no plots had snags, making the presence/absence classes unbalanced.  
Random Forest tends to work better with balanced presence/absence classes. It is expected that a model 
predicting all absence or all presence, would be very accurate, but have limited utility, in that it only 
provides information that is already known. The ≥ 10” class provides the most realistic and useful model 
results. 
 

Table 14. Random Forest presence/absence classification results for ≥ 6” class. 

 
  Actual data      

 Class Present Absent Sum Producer's 
accuracy 

User's 
accuracy 

Ommission 
error 

Commission 
error 

Predicted 
data 

Present 76 7 83 90% 92% 0.10 0.08 
Absent 8 22 30 76% 73% 0.24 0.27 

 Sum 84 29 113     
 
 

Table 15. Random Forest presence/absence classification results for ≥ 10” class. 

  Actual data      

 Class Present Absent Sum Producer's 
accuracy 

User's 
accuracy 

Ommission 
error 

Commission 
error 

Predicted 
data 

Present 37 17 54 70% 69% 0.30 0.31 
Absent 16 43 59 72% 73% 0.28 0.27 

 Sum 53 60 113     
 
 
Although not examined in the referenced paper, Random Forest was also used to estimate snag 
abundance for the ≥ 6” and ≥ 10” classes.  The resulting predictions were regressed against the plot 
counts of trees in these size classes, with the following results. 
 

Table 16. Random Forest snag abundance model results. 

Size Class R2 RMSE 
≥ 6” 0.24 2.65 

≥ 10” 0.26 1.46 
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Figure 29. Random Forest ≥ 6” class, predicted vs. plot snag counts with the line of equality. 

 

Figure 30. Random Forest ≥ 10” class, predicted vs. plot snag counts with the line of equality. 



Final Report June 1, 2017 
 

48 | P a g e  

The results of the Random Forest methodology are in line with those described by the paper’s authors, 
but are not better than those provided by the combined logistic regression / linear regression 
methodology used above. 
 
5.4 Recommendations 

 Snag detection is feasible with LiDAR approaches using multiple models, although the results 
are promising, these results would provide a ‘rough’ discernment of the snag properties on the 
landscape and should be supplemented with field observations. This is still a very active area of 
research with LiDAR and additional scientific developments should be monitored and tested to 
see if results can be improved. 
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6. Canopy Percent Cover 
6.1 LIDAR Method 
Canopy percent cover suitable for LiDAR assessment was not measured by the field crew as the cost 
and time to collect such data were deemed to be prohibitive.  Moreover, canopy percent cover from 
LiDAR has already been established as a metric that is strongly related with LiDAR data in the 
literature, as documented in our previous pilot literature review (Moskal & Cooke 2015). Hemispherical 
photos were taken from plot center, but these photos were not processed to estimate cover.  Although 
denisometer data was collected in the field the collection of such data is user subjective, and does not 
capture the structural three dimensional component of the canopy, thus, it is rarely used for comparisons 
to such high precision, three dimensional data as LiDAR. The densitometer is more suitable to 
understanding canopy closure. 
 
LIDAR can be processed to estimate canopy percent cover.  The Fusion program CloudMetrics 
(McGaughey, 2016) calculates several different cover metrics, all of which are different ratios of crown 
to non-crown LIDAR returns.  The theory behind these metrics is that the denser the canopy, the less the 
laser will penetrate below the canopy, resulting in fewer non-crown returns. The available cover metrics 
from CloudMetrics are: 

 Percentage of first returns above a specified height 
 Percentage of first returns above the mean height 
 Percentage of first returns above the mode height 
 Percentage of all returns above a specified height 
 Percentage of all returns above the mean height 
 Percentage of all returns above the mode height 
 Number of returns above a specified height / total first returns * 100 
 Number of returns above the mean height / total first returns * 100 
 Number of returns above the mode height / total first returns * 100 

 
Typically, we consider the first metric, Percentage of first returns above a specified height, to be canopy 
percent cover.  For this project, that was Percentage of first returns above two meters (6.56 ft.). First 
returns are more likely reflect off of the canopy than subsequent returns. Therefore, locations where first 
returns are reflecting off of objects below the two-meter height threshold likely have open canopy.  The 
two-meter height threshold was chosen to separate trees from shorter shrubs. 
 
6.1.1 Limiting Factors 
There are different ways to estimate canopy closure or canopy cover (which are not the same) in the 
field, but they can be time consuming and the estimates they produce don’t necessarily agree with one 
another or with LIDAR.  None of these methods can be said to represent the precise field condition, thus 
while some are considered by researchers to have greater or lesser accuracy none can really serve as a 
check on the performance of the others. 
 
6.1.2 Accuracy Assessment 
A canopy percent cover model was not build for this project, so it is not possible to perform an accuracy 
assessment. Again, we avoided building this model so as not to under represent the utility of LiDAR 
data by comparing it to unsuitable field data. Previous work has shown that LiDAR outperforms 
imagery in canopy percent cover estimates as documented in our past literature review pilot (Moskal & 
Cooke 2015.) 
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6.2 Imagery Method 
Although a LiDAR model was not constructed, for reasons of imprecise accuracy comparison, a cruder 
estimate was created from imagery to show some capability that exists with this approach. Some field 
data was readily available to gauge accuracy, making a provisional analysis more feasible. Canopy 
percent cover was calculated by summarizing the surface area of all individual tree crown objects, 
computing the ratio of this over an entire plot, and comparing that against field-crew estimations of 
canopy cover. Although we did not explore the relationships between densitometer and LiDAR, we did 
explore the optical data and field data relationships as this is commonly done in remote sensing research. 
 
6.2.1 Accuracy Assessment 
Estimated Canopy Percent Cover was within ± 25% of field estimated canopy cover for 63 of the 113 
plots [56% of all plots]. This outcome is similar to imagery predictions of crown diameter, which are 
strongly dependent on how individual trees are identified from imagery. As the TDA is configured to fit 
the majority of plot compositions [Douglas Firs and Western Hemlocks] there are outliers that warrant a 
more dynamic approach. The field estimates of the canopy cover were estimated using a spherical 
densiometer. While this estimate is lacking some objective rigor that is associated with other metrics, it 
still provides an insight as to how well imagery algorithms are classifying tree canopy area per plot. 
Imagery predictions were generally underestimating the canopy percent cover when compared to field 
data. This follows in suit with crown diameter estimations, which were also underestimated more often 
than overestimated.  
 

 
Figure 31. Imagery based percent canopy cover scatter plot. 

 
6.2.2 Limiting Factors 
Illumination angles, sensor viewing angles, species, stand density, and image quality can all affect the 
feasibility of identifying individual tree canopies for both automated and manual methods.  Imagery 
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must be of a high enough resolution for individual crowns to be visible.  Differing image quality over an 
area can cause results to vary across a study site. 
 
Field estimations of percent canopy cover may have subjective biases because of the methodology used. 
Moreover, it may be possible to only estimate upper levels of tree canopy coverage using aerial/satellite 
imagery because of its inability to offer some of the vertical information capable in LiDAR.   
 
6.3 Recommendations 

 Remote sensing, either optical or LiDAR stands a good chance to find relationships between 
canopy cover, canopy closure, canopy %, however, defining which relationships are of particular 
interest are necessary before further analysis should be undertaken. 

o Processing of hemispherical plot photos could be used to assess the accuracy in some of 
these estimates. 

o A second pilot might include more rigorous and objective field collection tasks for 
obtaining canopy characteristics. For example, canopy cover (portion of ground covered) 
or canopy closure (portion of sky hemisphere obscured as viewed from single point; 
densitometer) could be investigated and compared to LiDAR and imagery data. This 
would help to determine the relative value of LiDAR vs. imagery for predicting riparian 
canopy shading.  

 Provisional imagery analysis data could be used to reinforce the initial imagery segmentation 
algorithms by determining which imagery band and variable statistics influence canopy cover 
estimations.   
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7. Stand Density  
7.1 LIDAR Method 
Three methods were used to build stand density models from LIDAR.  The first approach built a linear 
regression model based on individual tree objects (ITOs) from a segmented canopy height model.  The 
second approach built a linear regression model using the method described in further detail in Section 
3.1, the LIDAR Method for Canopy Height.  The third method included the stratified bin of each plot, 
which indicates information about the height and cover values of each plot. 
 
7.1.1 Crown Segmentation  
An attempt to estimate density using ITOs developed using the crown segmentation methodology 
described in Appendix D was undertaken.  All three resolutions of canopy height model, 3 ft., 6 ft., and 
15 ft., were tested, with the 6 ft. model performing best.  Individual tree objects identified through this 
method were counted to estimate stand density, but these counts were a poor predictor of stand density 
and were less effective than the linear regression model described in the next section.  Development of 
the canopy height models and ITOs was very time consuming. 
 

Table 17. Stand Density Model. 

Metric Model R2 RMSE 

Density sqrt(density) = 1.979 + 4.0048*sqrt(A) 0.34 76.55 
 
Table 18: Model Variable. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A number of individual tree objects (ITOs) 
identified in the 6ft canopy height model 

see Appendix D 
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Figure 32. Predicted vs. plot density with the line of equality; 6 ft. Canopy Height Model individual tree objects (ITOs). 

7.1.2 Standard Linear Regression Model Approach 
The second model is a linear regression model developed using the comprehensive modeling approach 
described in Section 3.1 LIDAR Method: Comprehensive Model Selection. Models were built and 
ranked by their back-transformed R2 values. 

Table 19. Stand Density Linear Regression Model. 

Metric Model R2 RMSE 

Density sqrt(density) = -1.9701 + (2.1654*log(A)) + (16.4874*log(B)) + 
(0.3057*sqrt(C)) + (-5.8437*log(A)*log(B)) + (1.5078*log(B)*sqrt(C)) 

0.46 68.96 

 
Table 20. Stand Density Linear Regression Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.maximum maximum height, all returns 

B Elev.kurtosis measure of whether distribution of heights are 
heavy-tailed or light-tailed relative to a normal 
distribution, all returns (McGaughey, 2016) 

C Percentage.all.returns.above.6.56 percent cover; number of all returns above 2m / 
number of all returns 
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Figure 33. Predicted vs. plot density with the line of equality; standard linear regression approach. 

 
 
7.1.3 Model with BIN 
An alternative model was also developed using each plot’s bin from the stratification process described 
in Appendix A.  Using the 80th percentile height and percent cover values calculated in CloudMetrics, 
each plot was classified into its true bin.  A linear regression model using the bin value as a factor was 
built.  Adding this information slightly improved the model performance over the standard linear 
regression approach. 
 
Because there are 12 bins and 12 interaction terms in this model, an equation with all 24 of the 
coefficients is not written here.  However, it’s simplified form and performance metrics are presented 
below. 

 

Table 21. Stand Density Linear Regression Model with Bin. 

Metric Model R2 RMSE 

Density sqrt(density) ~ A + sqrt(B) 0.49 67.12 
 

Table 22: Model variables. 

Model 
Variable 

Fusion CloudMetrics Variable Variable Explanation 

A the bin of each plot as a factor see Appendix B 
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B number of individual tree objects 
(ITOs) identified in the 6ft canopy 
height model 

see Appendix D 

 

 
Figure 34. Predicted vs. plot density with the line of equality; model including bin. 

 

7.2 Imagery Method 
Like many of the other metrics, stand density is dependent on the existence of ITOs. Because of varying 
tree composition throughout the project area, one single TDA does not have the flexibility to address 
disparate scenarios. Ideally, the algorithm would first evaluate the area of interest, attempt a preliminary 
classification of composition types, and then execute the respective delineation function that best 
accommodates the spectral and spatial composition of that type. Types would vary according to 
presence of conifer/deciduous trees and maybe even species. However, the single TDA is still showing 
promising results for the majority of sample plots within the project area. 
 
7.2.1 Accuracy Assessment 
In 40% of plots, tree stand density predictions are within 5−

+  trees of actual plot counts. In almost 75% of 
plots, predictions are within 10−

+  trees. Following the error in estimation of the other metrics, the tree 
delineation tends to underestimate the number of trees per acre. 
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Figure 35. Frequency difference between estimated and measured stand density. 

 
Figure 36. Stand density scatterplot +/- 10 trees 
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Figure 37. Stand density - all plots 

 
7.2.2 Limiting Factors 
Evaluating all plots together does reveal the need for model adjustment, else existing outliers cannot be 
accurately estimated. The highest margin of error was 62 in plot 2123, which was previously discussed 
under the Limiting Factors of the Crown Diameter section. Examining the results of all plots, our 
model’s predictive capability decreases substantially. 
 
7.3 Recommendations 

 Stand density is achievable almost equally well with LiDAR and imagery based models, 
although, we suspect, in multilayer stands the LIDAR models might perform slightly better but 
we were not able to test this assumption 
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8. Conifer/Deciduous Classification 
8.1 LIDAR Method 
LIDAR was used to estimate the number of deciduous trees, following methods similar to the one 
described in Section 5.1 Snag Detection, LIDAR Method.  
 
8.1.1 Logistic Regression Model 
Using all plots, and the comprehensive modeling approach described in Section 3.1 LIDAR Method: 
Comprehensive Model Selection, models were built and ranked by their McFadden pseudo-R2 
values.  However, unlike the methodology in Section 3.1.2 Intensity, L Moment, and Count metrics 
were not excluded from the comprehensive model selection process.  Further review of the models with 
the highest R2 values resulted in selecting the model below. 
 

Table 23. Logistic Regression Model for Conifer/Deciduous Classification. 

Metric Model McFadden 
pseudo-R2 

Deciduous 
Presence/Absence 

deciduousPresenceAbsence = 8.53536 + (-1.94052 * 
log(A)) + (-0.09364 * B) + (0.07666 * C) 

0.29 

 
Table 24. Logistic Regression Model for Conifer/Deciduous Classification Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.P20 20th percentile of the heights, 
all returns 

B Int.mean mean intensity, all returns 

C (All returns above mean) / (Total first returns) * 100 percent cover; number of all 
returns above mean height / 
total number of first returns 

 
8.1.2 Linear Regression Model 
Using only plots with at least one hardwood tree, and the comprehensive modeling approach described 
in Section 3.1 LIDAR Method: Comprehensive Model Selection. Models were built and ranked by their 
back-transformed R2 values.  However, unlike the methodology in Section 3.1.2, Intensity, L Moment, 
and Count metrics were not excluded from the comprehensive model selection process.  Further review 
of the models with the highest R2 values resulted in selecting the model below. 
 

Table 25. Linear Regression Model for Conifer/Deciduous Classification. 

Metric Model R2 

Deciduous 
Abundance 

log(deciduousAbundance) = 0.568310 + (-0.179342 * sqrt(A)) + (0.038097 * 
B) + (0.431291 * sqrt(C)) + (-0.008131 * sqrt(A) * B) 

0.61 
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Table 26. Linear Regression Model for Conifer/Deciduous Classification Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Int.P30 30th percentile of intensity values, all 
returns 

B Percentage.first.returns.above.mean percent cover; number of first returns 
above mean height / total number of 
first returns 

C number of ITOs identified in the 6 ft. canopy 
height model 

see Appendix D 

 
8.1.3 Final Model 
The logistic regression model for presence/absence and the linear regression model for abundance were 
multiplied together and regressed against the field measured deciduous counts. 
 
This model had an R2 of 0.67 and an RMSE of 2.80. 
 

 
Figure 38. Predicted vs. plot deciduous counts with the line of equality. 
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8.1.1 Limiting Factors 
Developing the canopy height model and ITOs used in the abundance model is very time consuming, 
taking several weeks for the Mashel watershed.  The methods used to develop these datasets are 
described in Appendix D - Individual Tree Segmentation.  
 
8.2 Imagery Method 
Conifer/Deciduous classification, Species classification, and Basal Area are all predictors that, with 
imagery interpretation, rely much more on the statistical analysis of pixel content of individual trees. 
While previous metric predictions are still influenced by spectral analysis within the TDA, estimating 
more granular qualities of the tree, like species, requires further investigation of color compositions.  
 
8.2.1 Provisional Spectral Analysis 
Six plots were selected as training sites to develop a base for deciduous vs. conifer signatures. The plots 
were based on two factors. First, the number of trees in the sample plot are relatively well-predicted by 
the TDA, which provides a more stable base for individual comparison. Second, the tree composition is 
either conifer or deciduous-dominant. These sample plots provided a basis on how to construct the 
modelling approach. 
 
Several rudimentary parameters from ITOs were evaluated in order to determine systematic differences 
between conifer and deciduous compositions. These include: 

- Mean NDVI, Red, Green, Blue, and NIR spectral values 
- The standard deviation of NDVI, Red, Green, Blue, and NIR 
- Intensity, Hue, Brightness 

 
Many of these variables show no statistical significance between conifer and deciduous data sets, or 
demonstrate collinearity within regression analyses. The predictors that do show promise are the Red, 
Green, and Intensity variables. Deciduous trees show a far greater variation within the Red and Greed 
spectral values [Appendix E].  
 
To explore this, the standard deviations of these bands were used as broad thresholds to classify 
respective tree objects as conifer or deciduous. The following figures serve as visual comparisons. The 
table shows the tree object counts for respective standard deviation values. 
 

Table 27. Red Band Imagery Standard Deviation Comparison. 

      
Std Dev 
Values 

Mixed 
Deciduous 

Alder 
Dominant 

Alder Dominant 
2 

Mixed 
Conifer 

Mixed 
Conifer 2 

DF and 
WH 

1 0 0 0 0 0 0 
2 0 0 0 0 1 0 
3 0 1 0 3 0 0 
4 0 0 0 2 2 1 
5 0 2 1 5 0 1 
6 0 0 2 3 0 2 
7 0 0 1 3 4 4 
8 0 2 0 2 0 3 
9 1 2 0 0 3 2 

10 3 0 0 0 5 0 
11 0 4 3 0 2 1 
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12 1 1 1 0 2 1 
13 1 2 0 0 0 0 
14 1 0 5 0 0 0 
15 0 0 3 0 0 0 
16 2 1 3 0 0 0 
17 0 0 0 0 0 0 
18 1 0 0 0 0 0 
19 0 0 0 0 0 0 
20 1 0 0 0 0 0 

  

 
Figure 39. Red band standard deviation comparison. 

Using only the mean Red and Green values for each ITO as explicit thresholds, the basic extension of 
the TDA shows general success with many sample plots, but fails to account for variability in others. 
For 46 of the sample plots [~41% of all plots] this approach predicted within +- 5 of the conifer tree 
count and was within +-10 trees for 70 sample plots [~62% of all plots]. 
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Figure 40. Coniferous/Deciduous classification: 41% of all plots 

 

 
Figure 41. Coniferous/Deciduous classification scatterplot: all plots. 
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8.2.2 Linear Regression Model 
A regression model was constructed as another approach, using the Red and Green band variables as its 
base. Forty remaining spectral and spatial variables were tested in several permutations and 
progressively narrowed down to the most significant coefficients. The dependent variable was the ratio 
of conifer trees to all trees for each plot. Field data was modified by adding a binary coding of 1=conifer 
0=deciduous. This was based on the species of the tree. This value was then summed for each plot and 
divided by the plot’s total tree count.  
 

Table 28. Coniferous/Decisions Classification Linear Regression Model. 

Metric Model R2 

Conifer Abundance Plot.ConiferRatio = 2.81841 + A(0.02716) + B(0.13621) + C(0.409775)  
+ D(-45.04506) + E(-0.05550) 

0.29 

 
Table 29. Coniferous/Decisions Classification Linear Regression Model Variables. 

Model Variable eCognition IndividualTreeObject.Variable 

A Mean Red 

B Mean Green 

C Standard Deviation of GLCM Entropy 

D Mean Intensity 

E Standard Deviation of Predicted Crown Diameter 
 
The Gray Level Co-Occurrence Matrix (GLCM) method is a way of extracting second order statistical 
texture features by considering the relationship between groups of two (usually neighboring) pixels in 
the original image. The GLCM is a tabulation of how often different combinations of pixel grey levels 
occur, in a given direction, in an image object. The grey-level co-occurrence matrix can reveal certain 
attributes pertaining to the spatial distribution of the grey levels in an image object. Homogeneous 
scenes, like many of the conifer-dominant stands, will exhibit higher GLCM /entropy values, in both 
mean and variance.  
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Figure 42. Example of imagery based coniferous/deciduous crown classification along a stream reach. 

 
8.2.3 Limiting Factors 
The major limiting factor in this prediction again resides within the initial TDA. The majority of tree 
species collected from the field are Western Hemlocks and Douglas Firs, which contribute to much of 
the TDA’s accuracy. Deciduous trees are not captured within individual tree crown objects as accurately 
since their overall disproportion in number influenced the design of the algorithm much less. Still, this 
technique was chosen because it builds much of the provisional work for calculating tree species.  
 
A different approach that would circumvent the dependence on the TDA is to perform a similar spectral 
analyses but on the entire plot-level image instead of ITOs. This might inherit more complexities with 
grass, shrubs, and open ground, but these features could also be suppressed. Even in a rudimentary 
analysis the general proportions of deciduous and conifer presence might be detected fairly accurately, 
as current results suggest.    
 
8.3 Recommendations 

 Our findings indicate that the spectral information from imagery is adding ability to separate the 
two, further research should be devoted into fusing LiDAR and imagery for this purpose but it is 
beyond the scope of this study and could be investigated in a separate project. 

 There are other approaches with imagery that have proven to be effective but were not employed 
in this study. One alternative is to evaluate the spectral composition at plot-level instead of 
individual tree-level. This circumvents any error associated with the TDA, but might also 
introduce bias from non-tree vegetation within the plot. Still, research has shown this approach to 
be effective at determining coniferous and deciduous composition. 
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 Stem maps could have provided additional support to the TDA creation by allowing specific geo-
spatial comparisons of coniferous and deciduous tree existence.  
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9. Vegetation Class (Seral Stage) 
9.1 LIDAR Method 
Vegetation class is a description of how a stand is progressing through a development process and how 
the individual trees are interacting with each other and their specific, local environment. 
 
There are many different schemes used for classifying vegetation into development stages, with possibly 
one, Oliver and Larson (Oliver & Larson, 1990), establishing the most commonly used terminology. As 
time has passed, schemes for classifying vegetation seem to have become more complicated, increasing 
the number of classes from the four described in Oliver and Larson, to as many as six or eight. 
 
LIDAR is a tool that can help describe stand structure. Any method to estimate vegetation class from 
LIDAR must use the structure as a proxy for development progress.  To this end, only classes that can 
be distinguished from one another structurally can be identified using LIDAR.  This argues for a simple 
classification scheme. 
 
We chose a four class scheme based on Oliver and Larson, but because the names of vegetation classes 
reflect stages of a biological process, and because LIDAR can only tell you structural characteristics, we 
propose a different naming scheme for these vegetation classes. 
 

Table 30. Proposed Vegetation Classes. 

Oliver and Larson Class Proposed LIDAR Class 

Stand Initiation Initiation/Establishment 

Stem Exclusion Exclusion/Closure 

Understory Re-Initiation Maturation 

Old-Growth Diversification 
 
Vegetation class was not measured by the field crew and would be a highly subjective measurement had 
it been done.  It is therefore not possible to test the accuracy of any model, but we can propose an 
approach to assigning vegetation class that is similar to the binning process used to determine field plot 
locations, described in Appendix A - Plot Location Selection. 
 
LIDAR measures height and cover extremely well, and is also capable of describing the distribution of 
the heights.  A wide distribution of heights indicates a more open and variable canopy structure, while a 
narrow distribution of heights indicates a closed and consistent canopy.  The combination of these three 
metrics, height, cover, and distribution of heights, could be used to identify several different structural 
classes. 
 
For this project, a metric called surface area ratio, or rumple, will be used to describe the distribution of 
the heights.  It compares, as the name implies, the surface area of the canopy height model, to the 
surface area of the ground model.  For the 75 ft. cells used for this project, the ground model cells have 
an area of 5625 ft.  A completely flat canopy height model would also have a surface area of 5625 ft., 
producing a surface area ratio of one.  As the canopy height model becomes increasingly rough (a wider 
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distribution of heights), the surface area increases, causing the surface area ratio to increase.  Rumple 
values for the Mashel watershed are less than one along edges and areas with no data, otherwise, they 
range from 1 to just over 8. 
 
Oliver and Larson define a class, understory re-initiation, which is a non-useful class with regards to 
LIDAR.  Very few LIDAR returns will penetrate the primary forest canopy in a closed stand, making it 
very difficult to determine much about understory vegetation.  It would be misleading to call this class 
understory re-initiation. 
 
9.2 Vegetation Class Descriptions 

1. Initiation/Establishment: open with short vegetation. The 20 ft. maximum height is the 
approximate height at which trees would be clear to grow. 

2. Exclusion/Closure: increasing canopy closure, and height.  When a stand reaches 80% cover, it 
would commonly be considered closed canopy.  The 60 ft. maximum height is the approximate 
height at which trees would reach stem exclusion. 

3. Maturation: closed canopy with tall trees. 
4. Diversification: Canopy breakup and release of understory. 

 
The heights described here are based on expert opinion from discussions within RSAG.  They are 
approximations and represent general guidelines, not hard class boundaries.  Stand definitions would 
traditionally be based on tree diameters (Johnson & O'Neil, 2001). Height is used here because LIDAR 
is suited to accurate height measurements. 

 
9.2.1 Hierarchical Classification Scheme 
A hierarchical classification scheme can be used to assign areas on the landscape to vegetation classes, 
based on their values in the different LIDAR metrics.  When an area is assigned to a class in one rule, it 
may no longer be assigned to another class, using another rule.  The following rules are applied in order. 

1. Initiation/Establishment: cover less than 30% or height less than 20 ft. 
2. Exclusion/Closure: cover 30% to 80% and height 20 ft. to 60 ft. 
3. Diversification: cover 75% to 100%, height 80 ft. or taller, and Rumple 2 or more. 
4. Maturation: Everything else. 

 
Figure 43 demonstrates how these hierarchical classification scheme boundaries subdivided the LIDAR-
derived cover and height. These boundaries are unrealistic and arbitrary and do not represent realistic 
forest conditions well.  A plot with an 80th percentile height of 100 ft. and a percent cover of 29.9% 
would be in a different class than a plot with the same height but a percent cover of 30%.  As a response, 
to these limitations, we propose a probability based classification scheme in the next section. 
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Figure 43. Vegetation Classes on LIDAR metrics plot. 

9.2.2 Probability Classification Scheme 
Another approach to dividing areas into vegetation classes is to develop probability curves and combine 
them using weighted averages.  The combined probability value can be classified into separate 
classes.  This removes the need to set hard boundaries, as was done in the hierarchical classification 
scheme, and allows height, cover, and rumple to interact in determining the class. 
 
Height and Cover probability functions were developed using Chapman-Richard’s equations, loosely 
following growth and yield curves. 
 
Two probability functions were developed for rumple, which were averaged. The first is a logistic 
regression function dividing rumple values for smooth canopies from those for rough canopies.  The 



Final Report June 1, 2017 
 

69 | P a g e  

second probability function is a Poisson function used to indicate at what range of cover values a stand 
in the diversification class would occur.  Old, diversified stands, will have canopy openings. 
 
These probability curves can be combined using a weighted average, into a single probability value 
across the ranges of the three metrics. 

a)                                                                                                                          b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c)                                                                                                                          d)  

Figure 44. a) Height probability curve; b) Cover probability curve; c) Logistic regression probability curve 
for rumple d) Poisson probability curve for rumple.  Stands in the diversification class should have cover in 

the range of approximately 75% to 95%. 
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Figure 45. Combined probability values plotted against cover and height. 

The combined probability value can be classified into vegetation classes.  As can be seen in the plot 
below, class boundaries now curve across height and cover.  Additionally, the maturation and 
diversification classes overlap with one another depending on rumple values. 
 
The methodology presented here is a demonstration of how this process could be used. The shapes of the 
probability curves and the classification of the final combined probability values are theoretical and have 
not been tested thoroughly.  Further work needs to be done to define these factors. 
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Figure 46. Vegetation classes based on combined probability values, plotted against cover and height. 

 
9.2 Satellite/Aerial Imagery Method 
Optical imagery has been used to  detect stand layering and vegetation classes when other data such as 
LiDAR are not available (Moskal & Franklin, 2002). However, riparian stands are much more complex 
to work with due to the topography and structure challenges of these landscapes, and both of these 
components are inhibited by shadows present in optical imagery. Thus, because structure is a critical 
component to seral stage assessment and not a suitable characteristic shown to be reliably and 
consistently extracted from optical imagery in varying landscape types, this was not attempted with the 
imagery data.  
 
9.3 Recommendations 

 There is some promise in separating structural characteristics of vegetation with LiDAR that are 
likely to be related to seral stages, but much more work would need to be done to support this. 
Additionally, more work is needed to understand how these stages support riparian forest 
functions. 
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10. Species Identification 
10.1 LIDAR Method 
Currently there are no known large scale, high accuracy methods for identifying species from LIDAR.   
 
10.1.1 Limiting Factors 
LIDAR describes the physical arrangement and crown densities of a stand, and also provides limited 
near-infrared intensity information.  In order to identify the species of trees in a stand, they would have 
to be unique in terms of physical shape or intensity, which is not the case here.  Furthermore, in order to 
describe the shape or examine the intensity values for a tree, the laser reflection from it alone need to be 
separated from the reflections off of neighboring trees in the point cloud.  This is not possible in dense 
stands, or stands with complicated crown structures. 
 
10.2 Imagery Method 
It is possible to use pixel-based statistics for each ITO in order to identify tree species. Known trees and 
corresponding ITCs can be used as training sites which will form the unique signatures for each tree 
species that a classification algorithm will use. The input for each ITC consists of a single multispectral 
vector, containing signatures for: 

 Mean intensity value 
 The Standard Deviation of this mean 
 Mean-lit value [ave. of all pixels in an ITO that have a pixel value above the mean intensity of all 

pixels in the object] 
 Tree top value, which is the brightest pixel in the ITO 

 
10.2.1 Accuracy Assessment 
Because stem mapping was not implemented in the project’s data collection component, there are no 
explicit trees that can be used as training objects for accuracy assessment. There were enough stands that 
were deciduous-dominant and coniferous-dominant to create a prediction that can gauge the two 
compositions, but without the exact position of any particular tree species it might not be possible to 
predict this level of granularity. 
 
10.2.2 Limiting Factors 
Exact, known locations of individual trees. Overlapping of tree crowns [which we found on several 
occasions, large alder trees with smaller red cedar or Douglas firs growing underneath.] Illumination 
angles, sensor viewing angles, species, stand density, and image quality can all affect the feasibility of 
identifying individual tree canopies for both automated and manual methods.  Imagery must be of a high 
enough resolution for individual crowns to be visible.  Differing image quality over an area can cause 
results to vary across a study site. 
 
10.3 Recommendations 

 Timely and cost effective remote sensing techniques are weak at establishing large scale species 
mapping. A program that supplements the remotely sense assessments would be needed, 
potentially based on ground survey. 

 Hyperspectral remote sensing pilot investigation can be undertaken to assess the feasibility of 
such approach for species assessment in the State of Washington, but with lack of wall-to-wall 
hyperspectral coverage, data costs, data calibration issues and often the need to fuse the data with 
other remotely sensed data such as LiDAR the timing of such project is not immediate 
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11. Basal Area 
11.1 LIDAR Method 
The method used to build this linear regression model is described in further detail in Section 3.1, the 
LIDAR Method for Canopy Height. 
 
 
11.1.2 Accuracy Assessment 
R2 values are back-transformed where necessary. 
 

Table 31. Basal Area Model.  

Metric Model R2 RMSE 

Basal 
Area 

sqrt(basalArea) = 4.63914 + (-0.39478*A) + (-5.63122*B) + (0.11590*C) 
+ (1.25605*A*B) 

0.73 62.11 

 

Table 32. Basal Area Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.MAD.median Median of the absolute deviations from the overall 
median height, all returns 

B Canopy.relief.ratio (mean height - minimum  height) / (maximum  
height - minimum  height), all returns 

C Percentage.all.returns.above.6.56 percent cover; number of all returns above 2m / 
number of all returns 
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Figure 47. Predicted vs. plot basal area with the line of equality. 

11.2 Imagery Method 
Basal Area predictions were based on a linear regression model, with all independent variables being 
respective signatures of ITOs. The literature review for this project informed which larger set of 
variables to be used within the initial model. Then, this model was gradually narrowed down to only the 
most influential components show below. 
 

Table 33. Imagery Basal Area Model. 

Metric Model R2 

Basal 
Area 

Plot-level Basal Area = 297.6084 + A(-2091.1627) + B(-1468.3947) + 
C(1089.6580) + D(-0.08564) 

0.27 

 
Table 34. Imagery Basal Area Model Variables. 

Model Variable eCognition IndividualTreeObject.Variable 

A Standard Deviation of Hue 

B Standard Deviation of NDVI 

C Mean GLCM Homogeneity 

D Sum of Crown Coverage 
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Additional regressions statistics found in Appendix E. 
 
11.2.2 Limiting Factors 
Illumination angles, sensor viewing angles, species, stand density, and image quality can all affect the 
feasibility of identifying individual tree canopies for both automated and manual methods.  Imagery 
must be of a high enough resolution for individual crowns to be visible.  Differing image quality over an 
area can cause results to vary across a study site. 
 
11.3 Recommendations 

 LiDAR outshines optical remote sensing and provides reasonably accurate results, however, 
more specific understanding of how these models perform at different stand types and if these 
should be modeled uniformly or separately (per stand type) on the landscape needs to be 
understood through further research. Moreover, the performance of the models cannot be judged 
just on the accuracy as the costs of developing additional models should also be considered. 
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12.  Large Woody Debris 
12.1 LIDAR Method 
LIDAR was used to estimate the volume of large woody debris following the methods described in 
Section 4.1, Snag Detection, LIDAR Method. 
 
12.1.1 Logistic Regression Model 
Using all plots, and the comprehensive modeling approach described in Section 3.1 LIDAR Method: 
Comprehensive Model Selection, models were built and ranked by their McFadden pseudo-R2 
values.  However, unlike the methodology in Section 3.1.2, Intensity, L Moment, and Count metrics 
were not excluded from the comprehensive model selection process.  Further review of the models with 
the highest R2 values resulted in selecting the model below. 
 

Table 35. LWD Lidar Logistic Model. 

Metric Model McFadden 
pseudo-R2 

LWD 
Presence/Absence 

LWDPresenceAbsence = -9.2428 + (2.6817*log(A)) + 
(3.9671 * B) 

0.22 

 
Table 36. LWD Lidar Logistic Model Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.P80 80th percentile of the heights, all 
returns 

B Int.P01 1st percentile of intensity values, 
all returns 

 
 
 
12.1.2 Linear Regression Model 
Using only plots with at least one piece of large woody debris, and the comprehensive modeling 
approach described in Section 3.1 LIDAR Method: Comprehensive Model Selection, models were built 
and ranked by their back-transformed R2 values.  However, unlike the methodology in Section 3.1.2, 
Intensity, and L-Moment metrics were not excluded from the comprehensive model selection 
process.  Further review of the models with the highest R2 values resulted in selecting the model below. 
 

Table 37. LWD LiDAR Linear Regression Model.  

Metric Model R2 

LWD 
Abundance 

LWDAbundance = 34935.70 + (-9914.09 * sqrt(A)) + (-10272.33 * sqrt(B)) + (-
170.85 * C) + (3215.37 * sqrt(A) * sqrt(B)) + (54.99 * sqrt(A) * C) + (72.14 * 
sqrt(B) * C) + (-22.11 * sqrt(A) * sqrt(B) * C) 

0.21 
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Table 38. LWD LiDAR Linear Regression Model Variables.  

Model 
Variable 

Fusion CloudMetrics Variable Variable Explanation 

A Elev.MAD.mode Median of the absolute deviations from the 
overall mode height, all returns 

B Elev.P20 20th percentile of the heights, all returns 

C (All returns above 2m) / (Total first 
returns) * 100 

percent cover; number of all returns above 2m 
height / total number of first returns 

 

12.1.2 Final Model 
The logistic regression model for presence/absence and the linear regression model for abundance were 
multiplied together and regressed against the field measured downed woody debris volumes. 
 
This model had an R2 of 0.19 and an RMSE of 6223.04. 

 
Figure 48. Predicted vs. plot large woody debris volumes with the line of equality. 

12.3 Recommendations 
 LWD estimates from LiDAR are cursory at best, likely many errors of omission.  
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13.  Age 
Age was not measured during the fieldwork.  It was not practical to measure in terms of time, and many 
landowners would not have allowed their trees to be cored. 
 
13.1 LIDAR Method 
This was not studied for this project.  LIDAR describes the physical arrangement and crown densities of 
a stand, and also provides limited near-infrared intensity information.  It is only possible to measure age 
if it can be estimated from structural or intensity information.  
 
13.1.1 Limiting Factors 
Under very specific circumstances, such as a managed stand, where species and site index are known, 
and factors such as stand density are controlled, height-age models could be used to estimate age. In 
unmanaged forests, where species is not known, and stand dynamics are very complex, this becomes 
impossible. 
 
13.1.2 Accuracy Assessment 
An age model was not build for this project, so it is not possible to perform an accuracy assessment. 
 
13.2 Recommendations 
Explore other methods such as historical aerial photos or landowner records to determine stand 
establishment. Explore structural metrics out of LIDAR for stands with established known stands. 
  



Final Report June 1, 2017 
 

79 | P a g e  

14.  Diameter at Breast Height - DBH 
14.1 LIDAR Method 
The method used to build this linear regression model are described in further detail in Section 3.1, the 
LIDAR Method for Canopy Height. 
 

Table 39. DBH LiDAR Model. 

Metric Model R2 RMSE 

Quadratic Mean 
Diameter 

sqrt(diameter) = 0.605765 + (-0.025342 * A) + (0.774230 * log(B)) 
+ (0.323547 * sqrt(C)) + (0.022183 * A * log(B)) + (-0.106525 * 
log(B) * sqrt(C)) 

0.70 2.77 

 
Table 40. DBH LiDAR Variables. 

Model Variable Fusion CloudMetrics Variable Variable Explanation 

A Elev.MAD.median Median of the absolute deviations from the 
overall median height, all returns 

B Elev.P20 20th percentile of the heights, all returns 

C Percentage.all.returns.above.mode percent cover; number of all returns above mode 
height / number of all returns 

 



Final Report June 1, 2017 
 

80 | P a g e  

 
Table 41. Predicted vs. plot quadratic mean diameter with the line of equality. 

 

14.2 Recommendations 
 Lidar provides quite suitable DBH estimated. 
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15. Example of Future Technologies 
This section is co-authored with Dr. David Shean, Applied Physics Laboratory, University of 
Washington. 
 
Photogrammetry is a well-established technique used to make measurements from remotely sensed 
imagery, these measurements can be performed in three dimensions if the data is acquired in stereo, or 
with some overlap. Newer processing techniques have recently become available and applied to many 
types of stereo date, including imagery from aerial acquisitions such as NAIP and satellite imagery such 
as World View. Once of these techniques, Structure from Motion (SfM) is a photogrammetric range 
imaging technique for estimating three-dimensional structures from two-dimensional image sequences 
that may be coupled with local motion signals. It is studied in the fields of computer vision and visual 
perception. The technique works with two and more imagers and produces point clouds similar to 
LiDAR point clouds which can be further processed to surface models. In this section we demonstrate 
how such a technique can perform at estimating canopy height in the Mashel watershed. These methods 
are further described by (Shean, 2016). In general, the technique uses two World view scenes and 
produces a surface height model, we then apply the already existing LiDAR ground model to derive a 
canopy height model shown in Figure 49. The data is gridded to a coarser model to allow for a better 
derivation of height values form the satellite data. Height values were calculated from a raster analysis 
using the difference map relative to LiDAR DTM. Raster value statistics were first calculated for each 
plot. Then, the mean and maximum raster values for each plot were averaged and compared against the 
field measured data. We derive at a height model with an R2 value of a 0.51 (Figure 50). Again, this is 
still a very preliminary method, but worth considering, as the technology is improving and this type of 
approach could facilitate the temporal monitoring of forest height and structure change once a LiDAR 
data set is available State wide. The LiDAR is only needed once for the ground model. Similar approach 
could be applied and tested on NAIP imagery. 
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Figure 49. World View based Canopy height model gridded to 8m. 

 
Figure 50. Results for SfM estimated height.  
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16. Estimated Costs 
The ‘cheapness’ or price in this assessments assume that LiDAR will be available state wide and that the 
optical imagery (such as NAIP) will also be available, these data costs are set at 0 as other funding 
sources would be covering the costs of these data. This is not the actual cost of these data, moreover, if 
satellite imagery would be used as the optical data the cost of these data can be very high and vary by 
sensor as well as volume of data requested. It should be noted that the software used for processing the 
LiDAR data (FUSION) is free, as opposed to the image analysis software, which in not (eCognition). 
 
In some cases, the accuracy is a relative accuracy as estimated by visual interpretation of the remotely 
sensed-based models by the analyst as no appropriate data were available to measure the accuracy, when 
a relative accuracy is used a fill gradient shades the triangles in the figures below.  
 
The ‘fastness’ refers to estimates model development and processing time, this is dependent on the 
computing power, same computing resources are assumed for both approaches. Equipment costs are not 
estimated here as these change quickly. Estimates are provided only for the riparian metrics analyzed; 
empty graphs indicate the analysis was not undertaken for the particular data type. The processing time 
for the imagery tends to be higher as the Object Based Image Analysis (OBIA) methods necessary are 
quite analyst and computer time intensive.  
 
Other consideration for either approach is the data storage, backup and redundancy needs. Both would 
be necessary costs to be assessed regardless of which remote sensing technology is utilized, especially as 
the monitoring phases are implicated. This consideration should include the ability to reference original 
raw data, such as original LiDAR point clouds. This type of task is often necessary as new algorithms 
and tools become available are needed to make the temporal dataset comparable over periods of time. 
 
The analysis uses a triangle with the legend described in Figure 41. In Figure 52, it can be observed that 
LiDAR, when considering the three metrics outperforms optical imagery, this was part of the 
considerations, not just the accuracy and performance of the models, when making our recommendation 
in the above sections.  

 
Figure 51. Cost Analysis legend. 
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Figure 52. Estimated costs versus processing time versus accuracy (LiDAR on left and optical imagery on right).  
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17. Discussion 
The pilot project summarized in this report found that based on the performance and accuracy of the 
riparian metric models tested, as well as the costs (data and software) and processing time, LiDAR is the 

most appropriate remote sensing technology for establishing a baseline assessment of riparian forest 

stand conditions that will allow for long term monitoring and sustainable management of these forest 

types. Although optical imagery shows some promise, especially in the areas of separating conifers and 
deciduous vegetation, the ability of LiDAR to capture the structural complexity of theses stands and the 
ground component of the landscape critical for understanding hydrology is what outperforms the optical 
imagery. New technologies build on the foundation of photogrammetry, could prove to be useful for 
future monitoring efforts once the baseline conditions are established and we conclude that these 
technologies should continue to be assessed and tested, but the challenge of combining remote sensing 
technologies in monitoring programs should also be kept in mind. 
 
Next steps for State level monitoring: 

 Regardless of which remote sensing technology is implement a field sampling menthols would 
need to be devised and conducted to capture the range of forest types in the State. Our protocol 
can be used to guide the field campaign, but the capture and cost of capture of additional 
variables should be assessed. 

o Establish field plots at state level. 
 

 Models developed by this pilot are location and data sensitive, and although these could be 
applied at other locations we do not truly understand the limitation and performance of these 
models at the state level. It is likely that models would need to be developed for a variety of 
forest types in the State, but we do not know how many of these type of models would be 
needed. 

o Models will need to be developed for other forest types and potentially other LiDAR data 
characteristics in the state. 

o Find out what is the minimum number of models needed for the state. 
o Find out if the models are reusable, at what time point do the models hold up, 5 years, 10 

years?  
The next phase of a pilot should address the practicability of the application of remote sensing at the 
state level and the above set of tasks would allow those questions to be addressed. Moreover, the next 
phase pilot should address the scale at which the metrics describe characteristics that correlate with 
ecological function of riparian forests. 
 
17.1 Limitations 

 Remotely sensed data such as LiDAR is not available for the whole state of Washington, and 
optical data, such as NAIP, although available for the State, is not flown on a yearly basis. 

 We were not able to test some of the algorithm performance, such as segmentation of the 
imagery in eCognition and segmentation of the LiDAR data. Stem mapping could have allowed 
us to do this and improved this project, a future approach should collect a subset of plots that are 
stem mapped. 

 As new remote sensing technologies become available, combining those into existing monitoring 
programs can become a challenge, this, a monitoring program needs to be designed with these 
issues in mind.  
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Appendix A - Hydrology Processing 
Stream channel locations were created using a combination of ESRI ArcGIS geoprocessing tools, Saga 
GIS (http://saga-gis.sourceforge.net/en/) raster processing hydrology tools, and Safe Software’s Feature 
Manipulation Engine (FME). 
 
The source digital elevation model (DEM) data were created by the LIDAR vendor, Quantum Spatial 
(Watershed Sciences at the time of the data acquisition), as individual, approximately 32 square mile, 
tiles with the following specifications: 

 Cellsize: 3 foot x 3 foot 
 Projection: EPSG 2927; NAD 1983 HARN Washington State Plane South US Feet (FIPS 4602) 

 
Nine tiles covered some portion of the Mashel Watershed Administrative Unit (WAU).  These nine tiles 
were mosaicked into a single DEM, which was then clipped to the spatial extent of the WAU with a 
buffer of 500 feet.  All processing was performed on the mosaicked, clipped DEM. 
 

Digital Culvert 
The exact locations of streams, roads, and culverts are not known with any useful accuracy, and even if 
precise positions were known for a single location or landowner, high accuracy information is not 
widely available.  It is obvious that roads have an important impact on the surface flow of water and 
must be taken into account if an accurate DEM-derived stream layer is to be developed. 
 
One possible method to deal with this problem is described in a 2010 U.S. Geological Survey Scientific 
Investigations Report (Poppenga, et al. 2010).  This method involves identifying large sinks, and 
burning paths into the DEM to route flow out of these large sinks through digital culverts.  This method 
only requires the source DEM. 
Processing Steps 
The following steps describe the process of building stream channels from the source DEM. 

1. In Saga GIS, the source DEM was processed using a sink filling algorithm developed by (Wang 
and Liu 2006), with a minimum slope (Degree) of 0.1. 

2. The source DEM and the sink-filled DEM from step one were used as inputs in a python script-
based ArcGIS tool modeled on the USGS SIR, and developed by NRSIG.  The tool takes four 
inputs, set as follows: 

http://saga-gis.sourceforge.net/en/
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 Minimum Sink Depth: 1 
 Minimum Sink Volume: 1000 
 Maximum Sink Volume: 1,000,000 
 Low Point Search Distance Outside of Sink: 50 

3. The tool produces a new burned DEM with elevations lowered along sink exit paths, and several 
other ancillary GIS datasets. 
4. In Saga GIS, the new burned DEM from step two was processed using the same sink filling 
algorithm (Wang and Liu 2006) as step one, with a minimum slope (Degree) of 0.1. 
5. In Saga GIS, the burned, sink-filled DEM from step three was processed using the DEMON flow 
accumulation algorithm (Costa-Cabral and Burges 1994) to produce a flow accumulation raster, using 
the following settings: 

 Executing tool: Flow Accumulation (Flow Tracing) 
 Flow Accumulation Unit: cell area 
 Method: DEMON 
 DEMON - Min. DQV: 0.000000 
 Flow Correction: no 

6. In Saga GIS, the flow accumulation raster from step four was converted into a stream line vector 
dataset.  Flow accumulation values needed to be greater than or equal to 1.5 hectares of contributing 
area, to be considered a stream. 
 

Additional Attributes 
Strahler Order 
In FME, a workbench was created to take the stream lines from step five above and turn them into a 
network dataset with nodes at segment junctions, and a calculated topology.  This network was used 
within the workbench to calculate the Strahler Order (in FME) for each segment.  Additionally, the 
network was used to determine flow accumulation, as described below. 
Segment End Flow Accumulation 
The flow accumulation value at the downstream end of each stream segment was extracted from the 
DEMON flow accumulation raster, one cell upstream from each network node. 
Width Class 
For purposes of symbolizing the stream layer on a map, a width class attribute was calculated based on 
each stream segment’s flow accumulation value, using the following function: 
widthClass = round( 0.144 * flowAccumulation0.163 ) 
Unique Channel ID 
A python script was developed to assign a unique ID to each channel (stream) by traversing up the 
channel network segment by segment from the exit point of the watershed. At each branch in the 
network, the segment with highest flow accumulation value maintains the parent’s channel ID, while the 
other branches are assigned new IDs. 
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Appendix B - Plot Location Selection 
Introduction 
The Mashel watershed in southeastern Pierce County, Washington, is over 57,000 acres with 530 miles 
of streams in the official Department of Natural Resources (DNR) hydrology GIS dataset.  It was 
important to locate the 130 field plots in locations that represent the full range of riparian forest types in 
the watershed. 
 
Using a technique based on the literature (Hawbaker, et al., 2009), (Maltamo, Bollandsås, Næsset, 
Gobakken, & Packalén, 2010), (Gobakken, Korhonen, & Næsset, 2013), and on previous projects for the 
USDA Forest Service (USFS) and USDI Bureau of Land Management (BLM), the watershed was pre-
stratified into bins, and eight to 14 plot locations were randomly chosen for each bin from potential areas 
of the watershed in that bin.  Certain bins made up a higher proportion of the watershed, so these bins 
were assigned more plots. 
 
LIDAR metrics were used to pre-stratify the watershed.  The LIDAR processing software, Fusion 
(McGaughey, 2016), was used to create metrics for the watershed at a resolution of 75 feet 
(approximately 1/8th acre).  These metrics describe many attributes of the forest structure.  By locating 
plots across the range of forest structures in the watershed, it is believed that plots will better capture the 
range of forest types, than if they were randomly located without stratifying. 
 
Identifying the Study Area 
Land Use 
The ownership in the Mashel WAU is predominantly three types of landowners, the University of 
Washington, the DNR, and private timber industry (Corporate).  The remaining areas are Tribal, 
municipal and state agencies (non-DNR), conservation groups, private utilities, and other private 
ownership including small forest landowners. 
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Figure 53: Land owners of the Mashel watershed. 
The purpose of this project is to describe the status of riparian buffers on managed forest land in the 
watershed. Areas outside of buffers or on properties with non-forest land uses were removed from 
further consideration. 
 
2015 parcel data for Pierce County was used to identify the property boundaries and assessed land uses 
of the properties in the watershed. Parcels without resource land, land use classification were 
removed.  Resource lands are those in the Resource Production and Extraction land use category as 
defined in WAC 458-53-030 Stratification of assessment rolls—Real property 
(http://apps.leg.wa.gov/wac/default.aspx?cite=458-53-030). 
 

http://apps.leg.wa.gov/wac/default.aspx?cite=458-53-030
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Figure 54: Resource lands in the Mashel watershed. 

 
Non-Forested Areas 
Non-Forested areas were removed as well, by looking at two calculated LIDAR metrics, the 80th 
percentile height and the percent cover. Areas meeting any of the following criteria were removed: 

 metrics could not be calculated due to missing or inadequate LIDAR coverage 
 the 80th percentile height was less than two meters 
 the percent cover was less than 10 percent 

 

Stream Buffers 
Plots should be located inside of stream buffers, but the DNR Forest Practices stream buffering rules are 
very complicated, and the existing DNR hydrology dataset is known to be inaccurate, particularly in 
upper reaches.  Following RSAG guidance, stream buffers for the purposes of this project were defined 
as follows: 

 All type F and S streams were buffered 225 feet (three 75 ft. cells) 
 All type N streams were buffered 75 feet (one 75 ft. cell) for the first 1500 feet upstream from a 

type F or S stream 
 
Areas outside of these stream buffers were removed. 



Final Report June 1, 2017 
 

92 | P a g e  

 
Figure 55: Stream buffers. 

Combining 
The valid areas in the previous maps were combined to create a final valid area to be used for the 
principal components analysis (PCA) sampling in the next step.  Only LIDAR cells within this final 
valid area were sampled for the PCA. 
 
Selecting LIDAR Metrics 
Principal Components Analysis was performed to help narrow down the LIDAR metrics that will be 
used to stratify the landscape.  Previous experience on similar projects, also guided these decisions. 
Ten thousand sample points, were selected randomly within the valid study area defined above, and 18 
LIDAR metrics were measured at each point.  These measurements were used in the PCA. 



Final Report June 1, 2017 
 

93 | P a g e  

 
Figure 56: Example sample points. 

The first three components explain nearly all of the variability on the landscape. 
 

Table 42: PCA Importance of Components. 

Importance of Components:    

 Comp.1 Comp.2 Comp.3 

Standard deviation 3.42 1.99 1.26 

Proportion of Variance 0.65 0.22 0.09 

Cumulative Proportion 0.65 0.87 0.96 
 
Experience has shown that while using more metrics to stratify the landscape increases the cumulative 
proportion in the PCA, using more than two metrics makes fieldwork much less practical. Increasing the 
number of metrics used, increases the number of bins, and in order to guarantee enough plots in each 
bin, there have to be more plots.  This is expensive and takes time, with each additional metric 
compounding the problem.  Two metrics seems to be an ideal compromise between explanatory ability 
and practicality. 
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Height drives the first principal component, with various metrics having similar importance, while the 
second principal component is driven by cover. 
 
Table 43: Principal components analysis results. 
 Comp.1 Comp.2 Comp.3 

1st_cover_above6p5616 0.13 0.41 0.28 

all_1st_cover_above6p5616 0.18 0.32 0.32 

all_cover_above6p5616 0.13 0.41 0.24 

elev_ave_6p5616plus 0.29 -0.01 -0.14 

elev_cubic_mean 0.29 -0.08 -0.05 

elev_CV_6p5616plus -0.09 -0.35 0.44 

elev_P10_6p5616plus 0.22 0.17 -0.39 

elev_P25_6p5616plus 0.26 0.09 -0.29 

elev_P50_6p5616plus 0.28 -0.01 -0.13 

elev_P75_6p5616plus 0.29 -0.08 -0.03 

elev_P80_6p5616plus 0.29 -0.10 -0.01 

elev_P95_6p5616plus 0.28 -0.14 0.06 

elev_P99_6p5616plus 0.27 -0.14 0.09 

elev_quadratic_mean 0.29 -0.05 -0.08 

elev_stddev_6p5616plus 0.21 -0.28 0.31 

elev_variance_6p5616plus 0.16 -0.27 0.31 

FIRST_RETURNS_1st_cover_above6p5616 0.13 0.41 0.28 

FIRST_RETURNS_elev_P90_6p5616plus 0.28 -0.12 0.05 
 
Because the metrics chosen are being used to stratify the landscape for field crews, it is helpful to 
choose metrics that make sense to people at a plot.  80th percentile height is similar to what a field crew 
would see as plot or stand height.  LIDAR measurements of cover are not the same as canopy closure, 
but low cover occurs in a more open plot, and a high cover occurs in a more closed plot, which a field 
crew can see.  So choosing a height and cover metric to stratify the landscape makes sense from a 
statistical and practical standpoint.  While several height metrics perform similarly in the first principal 
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component, elev_P80_6p5616plus, the 80th percentile height (P80), was selected.  From the second 
principal component, 1st_cover_above6p5616, the percent cover (PC) was selected. 
 
Defining Bins 
The range and distribution of the P80 and PC values from the 10 thousand sample points were used to 
define the bins. 
 
PC was divided into four classes.  The top class ranged from 90% to 100%, and the bottom three classes 
were equal width subdivisions of the range from 10% to 90%, approximately 27% wide each.  The 
distribution of PC values skews heavily to high cover. 
 
Within each PC class the P80 values were subdivided into three classes.  The middle P80 class is centered on the mean value 

and is a one standard deviation wide (a ½ standard deviation above and below the mean).  The top P80 class is everything 
taller than the middle class, and the bottom P80 class is everything shorter. The bin definitions are presented below in Figure 

57 and  

Table 44. 
 

 
Figure 57: Bin boundaries with the 10k sample points. 

 

Table 44: Bin boundary values. 
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Bin PC Min PC Max P80 Min P80 Max Percent 

11 10 37 6.6 36.9 2% 

12 10 37 36.9 70.8 2% 

13 10 37 70.8 max 2% 

21 37 64 6.6 50.1 3% 

22 37 64 50.1 82.5 3% 

23 37 64 82.5 max 3% 

31 64 90 6.6 63.2 10% 

32 64 90 63.2 94.9 10% 

33 64 90 94.9 max 9% 

41 90 100 6.6 70.9 19% 

42 90 100 70.9 98.7 22% 

43 90 100 98.7 max 15% 
 

Sampling for Locations 
Every 75 ft. cell in the valid study area, had its bin calculated using the P80 and PC LIDAR datasets and the bin ranges 

defined above in  

Table 44.  Plot locations were then randomly selected using these bin values.  The field crew was tasked 
with measuring 130 plots total, with 8 to 14 in each bin.  50 extra plots were selected for each bin to 
account for issues that might arise. 
 

Pre-Fieldwork Review 
The LIDAR data was flown in 2011 and the plots were measured in 2016, a five-year gap, and the DNR 
hydrology dataset is known to have inaccurate locations for stream channels.  It was therefore very 
likely that management activity or disturbances could have occurred at plot locations, or that plots were 
located next to non-existent streams.  To prevent wasted time for the field crew, all plots were compared 
to 2015 imagery, before the field work, to make sure that plots seemed to have the appropriate trees for 
their bin, and that they were actually in a riparian buffer.  Any plots with issues were removed, and the 
first available alternate plot location was used in its place. 
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Appendix C – Field Data Collection 
Planning 
Project details, context, and input/resources from all team members 
was synthesized to create a field guide detailing the many elements 
of data collection [supplement]. This document follows FIA 
guidelines and was also reviewed by all team members prior to 
implementation. It contains information explaining both the nuances 
within the information to be collected and the methodologies and 
administrative considerations in doing so.  
 
 

 
 
Execution 
Field Collection efforts transpired 6/1/2016 - 9/17/2016. Two crew members operated throughout the 
duration of the period, based primarily in Pack Forest. A total of 113 plots were sampled. The following 
is a summary table of final plot results. 
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Available = pre-determined/unsampled field plots. 
Sampled = completed/successful data collection 
Ineligible = plot ruled out on site by field crew 
Unreachable = plot access not approved or unobtainable from private landowners 
 
A total of 2,879 trees were sampled, 2,546 of which were alive and 333 dead. Of the living trees, about 
90% [2,285] were large trees [DBH greater than 5 in.] and the remaining 264 were small, living trees. 
Summary metrics by tree species can be found in the next section. 
Data Collection Review - Metrics by Plot 
The following are several graphical and tabular displays of field collection data. Information is grouped 
both at the plot level, and then granulated further by tree species. Logistical field collection data, tree 
data, coarse woody debris data, and summarized plot data are all available in the field database 
supplement.  

 
 



Final Report June 1, 2017 
 

99 | P a g e  

 
Data Collection Review - Tree Metrics by Species 
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Appendix D - Individual Tree Segmentation 
LIDAR 
It was originally believed that individual trees might be identifiable to some extent in the LIDAR data, 
and that these individual trees might be useful for estimating stand density, estimating crown diameter, 
classifying trees as conifers or deciduous, and identifying snags.  This work was done to test the ability 
to accurately identify individual trees in the LIDAR dataset used for this project. 
 
The process for identifying individual trees involves creating a canopy height model (CHM) and 
segmenting that model using watershed segmentation.  The primary user input into this process is the 
resolution (cell size) of the canopy height models.  It was unknown if one resolution was more 
appropriate than another for identifying trees, so three resolutions were tested: 3 ft., 6 ft., and 
15ft.  These different resolutions may perform better for small or large trees. 
 
Data Processing 
CHMs are a top surface model from which the ground elevation has been subtracted, normalizing the 
surface to height above ground, rather than elevation.  The CHMs were created using Fusion LIDAR 
processing software and ESRI ArcGIS. 
 
Three different canopy height models with 3 ft., 6 ft., and 15 ft. cell sizes were built using the Fusion 
program CanopyModel.exe and vendor provided DEM ground models.   
 
With the CHM representing heights above ground, areas of extreme height (areas with heights over 300 
ft.) were removed in ArcGIS using Raster Calculator. 
 
There are power lines in the southwest corner of the watershed travelling from Tacoma Public Utilities’ 
Alder and La Grande dams on the Nisqually River.  LIDAR returns off of the lines can be mistaken as 
trees in canopy height models, so the CHM heights along these power lines were set to zero manually in 
ArcGIS. 
 
There are cells in the CHMs with no data. To fill in these holes, three median filter rasters were created 
for each of the three CHM resolutions.  The Focal Statistics tool was used in Spatial Analyst in ArcGIS 
with 3 by 3, 5 by 5, and 7 by 7 square neighborhoods.  This tool gives each cell the median value of its 
neighboring cells.  This is a useful way to fill in missing areas, but has the effect of smoothing the 
surface.  The 3 by 3 neighborhood fills in small holes, while the 5 by 5 and 7 by 7 neighborhoods fill in 
progressively larger holes, smoothing the surface more and more.  Holes that are too large to be filled by 
the 7 be 7 neighborhood were considered to be truly no data, which usually occurs in areas of open 
water, where the laser does not reflect. Once the median filter rasters were created, the CHMs were 
filled in an iterative process.  Areas of the CHMs with no data were replaced with the 3 by 3 median 
filter.  After that was completed, areas of the CHMs that were still no data were replaced with the 5 by 5 
median filter.  And finally, after that, areas of the CHMs that were still no data were replaced by the 7 by 
7 median filter.  This filled in holes while minimizing the smoothing. 
 
The Fusion program TreeSeg.exe (McGaughey, 2016) was used to perform tree segmentation on the 
canopy height models.  It produces polygons representing individual tree crowns and points representing 
the highest point in each polygon using a watershed segmentation method.  These objects are not actual 
trees, but rather mounds in the CHMs.  These are referred to as individual tree objects (ITOs). 
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Tree polygons with their high points inside the field plot boundaries were identified, and the number of 
trees per plot were counted.  The counts of individual trees were used as inputs in linear regression 
models for some metrics, and were used to test the effects of CHM resolution on tree counts as 
described below. 
 
CHM Resolution Performance 
It was initially unknown how well the tree counts from the different resolutions of canopy height models 
matched the plots (Figure 58). 
 

 
Figure 58: Field measured tree counts vs. ITO counts from three CHMs with 3 ft. (blue), 6 ft. (orange) and 15 ft. (grey) 

resolutions, with regression lines. R2 values: 3 ft. = 0.24; 6 ft. = 0.35; 15 ft. = 0.05. 

 
The number of trees counted in the field is almost universally higher than that measured in the LIDAR 
CHMs, at all three resolutions.  The R2 values are also all very low, ranging from 0.05 for the 15 ft. 
model to 0.35 for the 6 ft. model. 
 
The field crew measured large trees down to a minimum 5” diameter.  It is likely that many of these 
trees with small diameters are not detectable in the CHMs because they are below the primary 
canopy.  To test this, a minimum diameter threshold was set and all trees with diameters smaller than the 
threshold were not counted.  The threshold started at 5” and increased to 31” one inch at a time.  Above 
31” there were not enough plots with trees for the regression models to produce meaningful results. 
Back-transformed R2 values for log-linear regression models were calculated for each CHM resolution at 
each diameter threshold (Figure 59). 
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Figure 59: Regression model fit as trees below the minimum diameter threshold are removed from the field measured tree 

counts. 

 
The best performing model was the 6 ft. canopy height model, keeping the 5” minimum diameter.  This 
model had a back-transformed R2 of 0.31 (Figure 60). 
 



Final Report June 1, 2017 
 

105 | P a g e  

 
Figure 60: Tree counts from the 6 ft. CHM vs. field tree counts for trees with a 5" diameter or greater. 

 
The inability to identify individual trees from the LIDAR makes it difficult to use the tree polygons for 
further analysis identifying snags, or classifying ITOs as conifer of deciduous. 
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Appendix E – Imagery Analyses: Supplemental Information 
 

Aerial and Satellite Data Comparison 
Initial Tree Delineation algorithms were compared between aerial [NAIP 1m resolution] and satellite 
imagery [WorldView-3 1.3m color resolution and 0.31cm panchromatic resolution]. The aerial imagery, 
being slightly higher resolution, showed better, initial results for identifying individual trees. This was 
also evident upon visual inspection of the images over several of the sample plots. The WorldView-3 
imagery was obtained without cost for this project, making a comparison to NAIP imagery feasible. 
Isolation and analysis of the panchromatic imagery in conjunction with NAIP may have provided better 
explanatory power within the models, but this approach was outside the scope of the pilot and pushed 
time constraints needed to complete it. 

Tree Delineation Algorithm [TDA] – Processing Time and Resources 
The entire algorithm takes approximately 45 minutes to process all plot samples, using the following 
system specifications:  

- Imagery: NAIP @ 1m resolution 
- Operating System: Enterprise Server 
- Processor: Xeon CPU E5-2699 v4 @ 2.20GHz, 2200 Mhz, 22 Cores, 44 Logical Processors 
- Physical Memory: 256 GB 

The export process takes anywhere from 5-10 minutes. Note that these figures are evaluating only the 
imagery found within sample plot boundaries and not the entire Mashel project area 

Conifer/Deciduous Analysis 
 

Comparing Red and Green Band Values Between Conifer and Deciduous-dominant Plots 
 

t-Test: Two-Sample Assuming Unequal 
Variances α=0.05     
   

  
Red StdDev 
Deciduous 

Red StdDev 
Conifers 

Mean 11.20080383 8.026076348 
Variance 14.45132712 13.25574072 
Observations 45 71 
Hypothesized Mean Difference 0  
df 91  
t Stat 4.454946528  
P(T<=t) one-tail 1.19109E-05  
t Critical one-tail 1.661771155  
P(T<=t) two-tail 2.38218E-05  
t Critical two-tail 1.986377154   
 
   

Regression Output for Estimating Conifer Abundance 
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Regression Statistics 
Multiple R 0.532911652 
R Square 0.283994829 
Standard Error 0.268197855 
Observations 113 

 

  df SS MS F Significance F 
Regression 5 3.05273181 0.610546 8.488052301 8.5442E-07 
Residual 107 7.696519581 0.07193   

Total 112 10.74925139       
 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept 2.818408388 0.468731742 6.012839 2.57318E-08 
Mean Red 0.027157447 0.008617472 3.15144 0.0021076 
Mean Green 0.136210745 0.070553322 1.930607 0.05617826 
Mean  Intensity -45.04054571 18.25347895 -2.4675 0.015191035 
StdDev of Crown 
Diameter -0.055496041 0.017973598 -3.08764 0.00256982 
StdDev of GLCM Entropy 0.409775106 0.270072828 1.517276 0.132145953 

 
Basal Area Analysis  

Regression Statistics 
Multiple R 0.519681591 
R Square 0.270068956 
Standard Error 118.8102384 
Observations 113 

 
  df SS MS F Significance F 

Regression 4 564058.7 141014.7 9.989795 6.45E-07 
Residual 108 1524514 14115.87   
Total 112 2088573       

 

  Coefficients 
Standard 

Error t Stat P-value 
Intercept 297.6084368 37.46583617 7.943462 2.01324E-12 
StdDev of Hue -2091.162663 1412.001827 -1.48099 0.141520442 
StdDev of NDVI -1468.394664 1077.068661 -1.36333 0.175615423 
Mean GLCM 
Homogeneity 1089.657983 576.5766948 1.889875 0.061455794 
Sum of Crown Coverage -0.085638098 0.03866449 -2.2149 0.028866442 
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Appendix F – Fusion LIDAR Metric Descriptions 
 

Below is a description of the individual metrics calculated by the Fusion LIDAR processing software for 
each plot.  These are calculated using the CloudMetrics executable.  The description is taken from the 
manual provided with Fusion (McGaughey, 2016). 

CloudMetrics computes the following statistics using elevation and intensity values for each LIDAR 
sample: 

Total number of returns  
Count of returns by return number (support for up to 9 discrete returns)  
Minimum  
Maximum  
Mean  
Median (output as 50th percentile)  
Mode  
Standard deviation  
Variance  
Coefficient of variation  
Interquartile distance  
Skewness  
Kurtosis  
AAD (Average Absolute Deviation)  
MADMedian (Median of the absolute deviations from the overall median)  
MADMode (Median of the absolute deviations from the overall mode)  
L-moments (L1, L2, L3, L4)  
L-moment skewness  
L-moment kurtosis  
Percentile values (1st, 5th, 10th , 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 
99th percentiles)  
Canopy relief ratio ((mean - min) / (max – min))  
Generalized means for the 2nd and 3rd power (Elev quadratic mean and Elev cubic mean)  

 
In addition to the above metrics, CloudMetrics also computes various ratios of returns above a height 
break when the /above:# switch is used:  

Percentage of first returns above a specified height (canopy cover estimate)  
Percentage of first returns above the mean height/elevation  
Percentage of first returns above the mode height/elevation  
Percentage of all returns above a specified height  
Percentage of all returns above the mean height/elevation  
Percentage of all returns above the mode height/elevation  
Number of returns above a specified height / total first returns * 100  
Number of returns above the mean height / total first returns * 100  
Number of returns above the mode height / total first returns * 100 
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GLOSSARY 
 

InSAR stands for Interferometric Synthetic Aperture Radar - InSAR sometimes abbreviated IfSAR, 
is an approach in generating high-resolution digital data through the use of Digital Elevation 
Model (DEM) and an orthorectified radar image. 

 
Lorey’s Height - Lorey's mean height weights the contribution of trees to the stand height by their basal 

area. Thus Lorey's mean height is calculated by multiplying the tree height (h) by its basal area 
(g), and then dividing the sum of this calculation by the total stand basal area:  

 
Lorey's mean height is more stable than an unweighted mean height because it is less affected by 
mortality and harvesting of the smaller trees. 

 
National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural 

growing seasons in the continental United States. A primary goal of the NAIP program is to 
make digital ortho photography available to governmental agencies and the public within a year 
of acquisition. Projects are contracted each year based upon available funding and the imagery 
acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a 
transition year, and a three-year cycle began in 2009. Since the NAIP program began in 2003, 
vendors have been transitioning to digital sensors in imagery acquisition. Sinece 2009, most 
NAIP imagery has been acquired with digital sensors rather than film cameras. 

 
Quadratic Mean Diameter is the diameter of the tree of average per tree basal area. This becomes a 

convenient in that we often have basal are per acre and trees per acre but not the diameters of all 
the trees. 

 
Root Means Square Error (RMSE) estimates the deviation of the actual y-values from the regression 

line. 
 
Structure from Motion (SfM) is a photogrammetric range imaging technique for estimating three-

dimensional structures from two-dimensional image sequences that may be coupled with local 
motion signals. It is studied in the fields of computer vision and visual perception. 


