PROPOSED outline for electrofishing literature review 28 May 2015

Proposed budget: \$50,000

- I. Executive Summary
 - a. Purpose
 - b. Summary of each section
 - c. Recommendations
- II. Introduction
 - a. Electrofishing development
 - i. Theory
 - ii. Equipment evolution
 - iii. Unpulsed vs. pulsed dc
 - b. Standard fisheries technique
 - i. Research
 - ii. Monitoring
 - iii. Collections
 - iv. Stream typing---consultants, non-profits, Tribes, agencies, etc.

III. Effectiveness in streams and wetlands

- a. Physical constraints
 - i. Electric field
 - 1. Size
 - 2. Shape
 - 3. Area of influence
 - a. depth
 - b. area
 - ii. Complex habitat and cover
 - 1. Size of habitats
 - a. wetlands
 - b. streams
 - 2. Characteristics
 - a. wetted depth
 - b. velocity
 - 3. Water quality
 - a. visibility
 - b. conductivity
 - c. temperature
 - 4. Cover
 - a. organic
 - b. inorganic
- b. Biological constraints
 - i. Species
 - 1. Taxis

- 2. immobilization
- ii. Size
 - 1. Taxis
 - 2. Immobilitzation
- IV. Direct harm
 - a. Hemorrhaging
 - b. Branding
 - c. Vertebrae damage
 - d. Delayed effects
 - i. Predation
 - ii. Growth
 - iii. Reproduction
 - e. Precautions
 - i. Equipment
 - ii. Reducing and avoiding harm (e.g., spawners/redds)
 - iii. Fish handling/processing BMPs
- V. Population level effects
 - a. Abundance
 - i. Probability of detection
 - ii. Effective population size
 - b. Productivity
 - i. Life stage specific survival
 - ii. Delayed effects
- VI. Permitting
 - a. State
 - b. Federal
 - i. USFWS
 - ii. NOAA
- VII. Best management practices for the use of electrofishing in protocol surveys
 - a. One of many different protocol methods
 - i. Common practice
 - ii. Simple to use
 - b. Effectiveness
 - i. Physical constraints
 - ii. Biological constraints
 - c. Direct harm
 - i. Settings are important
 - ii. Environmental variables are important
 - iii. Fish handling is perhaps the most important factor
 - d. Population level effects
 - i. Individuals in population
 - ii. Site specific strategies to avoid population effects

- e. Permitting
 - i. WDFW SCP
 - 1. Reporting requirements
 - 2. Data availability
 - ii. ESA Sxn 10
 - 1. Reporting
 - 2. Electrofishing log requirement
 - 3. Data availability
- f. How the data are used in Forest Practices
 - i. FPA
 - ii. WTMF
- VIII. Discussion
 - a. Important tool for active capture in streams and wetlands
 - i. Efficiency
 - ii. Reliability
 - iii. bias
 - b. Effectiveness
 - i. Many factors are important in evaluating its effectiveness
 - c. Effects can be mitigated
 - i. Individual
 - ii. Population
 - d. Permitted activity for T&E species
 - e. Can be used in protocol surveys
- IX. Recommendations
 - a. Precautions to minimize harm to fish and amphibians
 - b. Reduce the need for electrofishing by being judicious in the issuance of electrofishing permits
 - i. WDFW
 - ii. NOAA
 - iii. USFWS
 - c. Require reporting that is informative for agencies and the public
 - i. Electronic database
 - ii. Location: coordinates and stream number
 - iii. Date
 - iv. Size, species, and number of individuals observed
 - v. Condition of permit
 - d. Share data from e-fishing/other permitted activities across agencies
 - i. WDFW and Tribes
 - ii. NOAA
 - iii. USFWS
 - e. Update fish distribution model with most current data and refine at scheduled intervals
 - i. Inform model with protocol survey data
 - 1. Non-changes to stream typing are IMPORTANT findings

- 2. All surveys need to be reported
- ii. Refine data with data as they are available
 - 1. Species specific information
 - 2. Remote sensing data
 - 3. Lidar coverage
 - 4. Physical habitat survey data
 - 5. Road abandonment and fish passage improvement
- X. Literature Cited