Electro-Fishing Workshop

Practitioner's Presentation Landowner Caucus January 30th, 2015

Why do landowners conduct stream classification surveys?

"Before submitting a Forest Practices Application/Notification (FPA/N), landowners are required to correctly identify and classify all streams, wetlands, lakes and ponds, and describe how the verification was implemented in the field for all waters within the proposed activity area and within 200 feet of the proposed activity."

- Inaccurate mapping and unmapped streams
- E-fishing is accurate and reliable
- Burden is on the landowner to "get it right"

"Pre-Field" Planning

- Internal records and databases
- External sources (e.g., DNR Water Type Maps)
- Surveys conducted in upstream reaches
- Previous and adjacent landowners
- Consultation with WDFW and affected Tribes

Eliminates redundant and duplicative surveys

Visual Techniques

- Walking stream bank to visually observe fish
- Feeding (e.g., using Powerbait to elicit a response)
- Hook and line, snorkeling (large water bodies)

"The absence of fish use must be supported by stream survey information collected using a backpack electroshocker to electrofish the stream segment in question." Board Manual Section 13, Part 4.
 \title{
Strategic Implementation
}
 \title{
Strategic Implementation
}
- Jiming
- Flow regime Natural and Man made barriers

This is not your grandfather's e-fisher!

- Technological advances in equipment
- AC versus DC
- Adjustable setting depending on water conditions
- voltage, pulse width, pulse rate
- Trained biologists

Mr. N. Phil Peterson
West Fork Environmental, Inc.
530-B Ronlee Lane NW
P.O. Box 4455

Olympia, WA 98501
Re: Permit 15486
Dear Mr. Peterson:
Enclosed is Scientific Research Permit 15486 issued to the W he authority of Section $10($ a) (1)(A) of the Endangered Specia annually take listed salmonids while conducting a study to de in streams of select basins in Oregon and Washington.
The National Marine Fisheries Service (NMFS) requires that Permit 15486 review the permit before engaging in the perm number is (503) 230-5441. Please note that you are not autho 5486 until our office receives a signed copy of the signature

Your attention is directed to Section $\mathrm{B}(19)$ which describes th requirements. Permit 15486 is subject to annual authorizatio compliance with the authorization requirements. Annual repo 15486 expires on December 31, 2015

If you have any questions concerning the permit, please conta

Enclosure
ce: File copy - [15486], F/EN6 - NMFS Enforcement (Ra Science Center (Ferguson)
 Science Center (Ferguson)

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

National Marine Fisheries Service
7600 Sand Point W
Seattie, Washington 98115
October 25, 2011 F/NWR

Permitting

United States Department of the Interior
FISH AND WILDLIFE SERVICE

911 NE 11^{\dagger} Avenue
Portland, Oregon 97232-418
in reply refer to: AES/Recovery

PERMIT \# 13-032b Page 1 of 5

Dear Permittee:
Enclosed is your U.S. Fish and Wildlife Service recovery permit issu 10(a)(1)(A) of the Endangered Species Act (ESA), 16 U.S.C. 1531 et regulations.
Please refer to the permit number in all correspondence and reports cc Engagement in any activity pursuant to this permit constitutes unders the Special Terms and Conditions attached to your permit.

By accepting this permit and conducting activities authorized by it, y the attached terms and conditions. Failure to meet permit terms and c ESA section 9 take violations, or suspension/revocation of this permi

Please be aware that some species named in your recovery permit ma various State Endangered Species Acts or otherwise be of special con activities affecting those species may not be conducted without first o State permits. Federal permits do not supersede State authorizations.

If you have any questions regarding this matter, please contact Grant 503-231-6844. Thank you.

Sincerely,
Pathich Sousa
Endangered Species Pro
Enclosures

WASHINGTON STATE SCIENTIFIC COLLECTION PERMIT
Washington Department of Fish and Wildlife, Attn: SCP
600 Capitol Way North
(360) 902-2464

RCW 77-32-240, WAC 220-20-045 for:
\square Display/Educution

Rescarch/ Scientific Investigation
Expiration Date: March 13. 2014

Permit Holder: Nhil Peterson			
Agency:	West Fork Environmental, Inc.		
Address:	PO Box 4455		
Olympia, WA 98501		\quad	Telephone: 360-753-0485
:---			
Email:			

\section*{| $\begin{array}{l}\text { Sub-Permit Holder(s): } \\ \text { Kyle Meier }\end{array}$ | Ryan Simmons |
| :--- | :--- |}

\begin{tabular}{|c|c|c|c|}
\hline Species: $\begin{aligned} \\ \\ \text { Coho }\end{aligned}$ \& Number:
10
5
5
10
5
5
5
5
10
10
5
5 \& Lecation: Clallam County Clark County Cowlitz County Jefferson County King County Kitsap County Lewis County Mason County Skagit County Snohomish County Thurston County Wahkiakum County \& Method of Collection:
Electrofishing

\hline Species:

Rainbow trout \& Number:
5
5
150
5
50
5
5
20
5
25
10
5
25
10
5

5 \& | Location: |
| :--- |
| Benton County Cowlitz County King County Klickitat County Lewis County Okanogan County Pend Oreille County Skagit County Skamania County Snohomish County Spokane County Stevens County Thurston County Walla Walla County Whatcom County Yakima County | \& Method of Collection:

Electrofishing

\hline
\end{tabular}

Permitting

Freshwater Location
Research Area: Pacific Ocean State: WA Sub Basin (4th Field HUC): Cowlitz Stream Name: Coweeman River, Ostrander and Salmon Creeks Sale in Oregon of species taken: None
Location Description: Coweeman River, Ostrander Creek, and Salmon Creek in the lower Cowlitz subbasin.

Line	Ver	Species	Listing Unit/Stock	Production /Origin	Life Stage	Sex	Expected Take	Actual Take	Indirect Mort	Actual Mort	Take Action	Observe /Collect Method
1		Steelhead	Lower Columbia River NMFS Threatened)	Natural	Juvenile	Male and Female	10	0	1	0	Capture/Handle/Release Fish	Electrofishing, Backpack
2		Salmon, Chinook	Lower Columbia River NMFS Threatened)	Natural	Juvenile	Male and Female	10	0	1	0	Capture/Handle/Release Fish	Electrofishing, Backpack
3		Salmon. coho	Lower Columbia River NMFS Threatened)	Natural	Juvenile	Male and Female	10	0	1	0	Capture/Handle/Release Fish	Electrofishing. Backpack

Section 10(a) permit: 2013 report table (1 of 12)

Reducing Uncertainty

Efficacy using electrofishing

Survey No.	Survey Distances (in Feet)			\% survey below LF
	Below LF	Above LF	Total	
1	-	1,016	1,016	0
2	-	968	968	0
3	-	1,259	1,259	0
4	80	1,089	1,169	7
5	-	784	784	0
6	-	1,082	1,082	0
7	-	687	687	0
8	-	2,063	2,063	0
9	-	1,226	1,226	0
10	-	1,442	1,442	0
11	-	422	422	0
\% 12	1,053	1,582	2,635	40
\ 13	-	1,245	1,245	0
W 14	265	1,616	1,881	14
15	-	1,657	1,657	0
16	-	632	632	0
17	-	843	843	0
18	-	609	609	0
٪ 19	412	1,956	2,368	17
20	-	1,286	1,286	0
	1,810	23,464	25,274	7

LF = last detected fish

Key Questions:

1. Do protocol electro-fishing surveys affect fish populations?
2. Can protocol electro-fishing surveys as currently applied in the field achieve FFR performance targets and objectives?

Do protocol electro-fishing surveys affect fish populations?

While there are some electro-fishing impacts to individual fish, we work hard to minimize those, and effects have not been demonstrated to be significant at the population level .

Kocovsky et al

- No observed population effects after repeated annual sampling.

Elle \& Schill (Idaho Fish and Game)

- Less than 1\% population effect compared to 50\% natural background mortality.

Terminal Site Example ($+/-20 \%$ of F / N Breaks)

Total Cutthroat Present $=564$
Fish Sampled = 5 out of 564
Assumed Mortality Rate $=2 \%$
Survey Population Impact = 0.1 fish per 564
50\% Annual Background Mortality = 282 per 564

I = Age 1 Cutthroat
= Age 0 Cutthroat

Can protocol electro-fishing surveys meet FFR water typing performance targets and objectives?

Translating FFR's landscape-scale targets into site scale surveys:
-Habitat likely to be used by fish...
-95\% precision
-Equitable Allocation of risk
-Map-based system
-Reduce/Eliminate Electro-fishing

Research initiated by ISAG to bridge the gap between "last fish" and "last habitat".

Problems/Issues:
Validating the model or typing streams using "last fish" information alone left questions about achieving the FFR "Likely to be used" fish habitat objective.

- What is reliability of a single visit survey of fish use
- How does seasonal variability affect classification
- How does annual variability affect classification
- Is fish distribution different in un-managed areas compared to managed (i.e., historic vs. current fish distribution)?

CMER Research Findings

Consistent patterns emerged:

- Seasonal and annual variability occurred within a consistent range of stream length, centered around zero.
- No trends across years, seasons, or forest management intensity were identified.
- Surveys reliably identified uppermost fish.

Figures from Cole et al 2006

Do surveys as currently applied address FFR fish habitat objectives?

Fish Survey Comparison

How well do single visit protocol surveys identify streams likely to be used by fish?

Several CMER studies provide useful information.
-All CMER variability studies showed equal likelihood of downstream and upstream movement.

- Most streams = no change.
- No trend by season or across years.
-Distance of movement relatively small, Average $=25.5 \mathrm{~m}, 95 \%$ within +/- 100 m .

Distance

From CMER Annual Variability Study Cole and Lemke 2003

So, how much of the stream network are we talking about here, anyway?

Estimated variability at a basin-scale

Factor in the routine extension of Type F Waters beyond Last Fish

More than 70 miles so far...

Variability in fish use appears to be encompassed within the proposed Type F/N breaks.

ISAG identified options to reduce electro-fishing by concentrating survey effort where model map error is most likely.

-2005 FPB direction to develop hybrid option.
-Survey "Terminals", accept "Laterals"
-90+\% of model map error occurs in "Terminal" F/N breaks.
-"Terminal" F/N breaks represent 20\% of the total F/N breaks.
-GIS screening tools identify areas with highest likelihood of map error:

