Mapping Potential Habitat with Remote Sensing

Virtual Geomorphic Mapping of Offchannel Salmon Refugia

Joseph Jones
USGS Washington Water Science Center

LiDAR Learning Event, UW-DNR

January 3, 2008

Dosewallips River

- In partnership with Port Gamble S'Klallam Tribe
- Relatively undisturbed watershed; 10 miles of habitable river miles
- Eastern Olympic Peninsula, western Hood Canal
- Lower 3-5 miles lightly to moderately developed

Current Conditions

- Dosewallips River historically clear cut
- Otherwise, near natural, recovering forest
- LWD is making it's way to stream, sans anchor pieces
- LWD is currently not providing consistent refugia

Needs

- Identify potential near and off-channel habitat for endangered salmonids in a recovering stream
- Where are abandoned and overflow channels?
- What are their relative elevations to current stream elevations?

Method Development

- Use LIDAR elevation data to identify potential habitat (avulsed, migrated, and overflow channels)
 - Elevation maps
 - Slope derivatives
- Use color orthophotography to verify and augment
- Multiple lines of evidence; LIDAR, color orthophotos, field mapping
- Test methods on several unique reaches

Map of Study Locations RM1 and RM 5

Map of Study Locations RM10 and RM 12

allips_4.jpg allips_30.jpg allips_3.jpg allips_29.jpg allips_28.jpg allips_27.jpg allips_26.jpg allips_25.jpg allips_24.jpg allips_23.jpg allips_22.jpg allips_21.jpg allips_20.jpg allips_2.jpg allips_19.jpg allips_18.jpg allips_17.jpg allips_16.jpg allips_15.jpg allips_14.jpg No. allips_13.jpg allips_12.jpg allips_11.jpg allips_10.jpg allips_1.jpg allips_9.jpg River Mile 10

.

LIDAR: lessons learned

- Low level flights
 - Resolution vs parallax; a tough choice
- Post-processing
 - Specifications; good contracts make good data
 - Reprocessing; the terrain under investigation may not justify it.....

ELEVATION ABOVE RIVER ELEVATION

